中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion

文献类型:期刊论文

作者Chen, Yaxiong2,3,4; Zhao, Dongjie2,3,4; Lu, Xiongbo2,3,4; Xiong, Shengwu2,3,4; Wang, Huangting1
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2022
卷号15页码:2816-2825
关键词Feature extraction Codes Data mining Convolution Linear programming Approximation algorithms Semantics Deep hash codes multichannel feature fusion multiscale context information unsupervised hashing learning
ISSN号1939-1404;2151-1535
DOI10.1109/JSTARS.2022.3162251
产权排序4
英文摘要

Unsupervised hashingalgorithms are widely used in large-scale remote sensing images (RSIs) retrieval task. However, existing RSI retrieval algorithms fail to capture the multichannel characteristic of multispectral RSIs and the balanced property of hash codes, which lead the poor performance of RSI retrieval. To tackle these issues, we develop an unsupervised hashing algorithm, namely, variational autoencoder balanced hashing (VABH), to leverage multichannel feature fusion and multiscale context information to perform RSI retrieval task. First, multichannel feature fusion module is designed to extract RSI feature information by leveraging the multichannel properties of multispectral RSI. Second, multiscale learning module is developed to learn the multiscale context information of RSIs. Finally, a novel objective function is designed to capture the discrimination and balanced property of hash codes in the hashing learning process. Comprehensive experiments on diverse benchmark have well demonstrated the reasonableness and effectiveness of the proposed VABH algorithm.

语种英语
WOS记录号WOS:000784198000007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://ir.opt.ac.cn/handle/181661/95851]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Xiong, Shengwu
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
2.Wuhan Univ Technol, Chongqing Res Inst, Chongqing 401122, Peoples R China
3.Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572000, Peoples R China
4.Wuhan Univ Technol, Sch Comp & Artificial Intelligence, Wuhan 430070, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yaxiong,Zhao, Dongjie,Lu, Xiongbo,et al. Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2022,15:2816-2825.
APA Chen, Yaxiong,Zhao, Dongjie,Lu, Xiongbo,Xiong, Shengwu,&Wang, Huangting.(2022).Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15,2816-2825.
MLA Chen, Yaxiong,et al."Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022):2816-2825.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。