中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data

文献类型:期刊论文

作者Mao,Yu-Fang; Yuan,Xi-Guo; Cun,Yu-Peng
刊名ZOOLOGICAL RESEARCH
出版日期2021
卷号42期号:2页码:246-249
关键词COPY-NUMBER READ ALIGNMENT CANCER
ISSN号2095-8137
DOI10.24272/j.issn.2095-8137.2021.014
WOS记录号WOS:000630398800016
源URL[http://ir.kib.ac.cn/handle/151853/73098]  
专题中国科学院昆明植物研究所
作者单位1.Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
2.[Mao, Yu-Fang
3.Chinese Acad Sci, Kunming Inst Bot, Germplasm Bank Wild Species, iFlora Bioinformat Ctr, Kunming 650201, Yunnan, Peoples R China
推荐引用方式
GB/T 7714
Mao,Yu-Fang,Yuan,Xi-Guo,Cun,Yu-Peng. A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data[J]. ZOOLOGICAL RESEARCH,2021,42(2):246-249.
APA Mao,Yu-Fang,Yuan,Xi-Guo,&Cun,Yu-Peng.(2021).A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data.ZOOLOGICAL RESEARCH,42(2),246-249.
MLA Mao,Yu-Fang,et al."A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data".ZOOLOGICAL RESEARCH 42.2(2021):246-249.

入库方式: OAI收割

来源:昆明植物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。