MCFINet: Multidepth Convolution Network With Shallow-Deep Feature Integration for Semantic Labeling in Remote Sensing Images
文献类型:期刊论文
作者 | Wang, Dongji1,2,3![]() ![]() |
刊名 | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
![]() |
出版日期 | 2021-03-19 |
页码 | 5 |
关键词 | Labeling Convolution Semantics Feature extraction Remote sensing Kernel Fuses Convolutional neural networks multiscale contexts remote sensing images semantic labeling |
ISSN号 | 1545-598X |
DOI | 10.1109/LGRS.2021.3065039 |
通讯作者 | Dong, Qiulei(qldong@nlpr.ia.ac.cn) |
英文摘要 | Semantic labeling in remote sensing images is an important and challenging technique, which has attracted increasing attention recently in earth detection, environmental protection, land utilization, and so on. However, it remains a challenge on how to effectively label objects with varied scales and similar textures in literature. Addressing this challenge, we propose a multidepth convolution network with shallow-deep feature integration, called MCFINet, which could effectively integrate multiscale contexts and shallow-layer/deep-layer features for labeling various objects. In the proposed network, we design two new modules--a multidepth convolutional module (MDCM) and an adaptive feature integration module (AFIM). The MDCM employs multilayer convolutions with varied layer numbers but fixed small-sized kernels in parallel to capture multiscale contexts, while the AFIM adaptively integrates the shallow-layer and deep-layer features of the proposed network to capture more discriminant features for segmenting objects with similar textures. Extensive experimental results on two benchmark data sets demonstrate that MCFINet could achieve better performances than seven existing methods in most cases. |
资助项目 | National Natural Science Foundation of China[U1805264] ; National Natural Science Foundation of China[61991423] ; National Natural Science Foundation of China[61573359] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB32050100] |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000732096400001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences |
源URL | [http://ir.ia.ac.cn/handle/173211/46941] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
通讯作者 | Dong, Qiulei |
作者单位 | 1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Dongji,Dong, Qiulei. MCFINet: Multidepth Convolution Network With Shallow-Deep Feature Integration for Semantic Labeling in Remote Sensing Images[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2021:5. |
APA | Wang, Dongji,&Dong, Qiulei.(2021).MCFINet: Multidepth Convolution Network With Shallow-Deep Feature Integration for Semantic Labeling in Remote Sensing Images.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,5. |
MLA | Wang, Dongji,et al."MCFINet: Multidepth Convolution Network With Shallow-Deep Feature Integration for Semantic Labeling in Remote Sensing Images".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (2021):5. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。