中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Manipulating Template Pixels For Model Adaptation Of Siamese Visual Tracking

文献类型:期刊论文

作者Li ZB(李振邦)
刊名IEEE Signal Processing Letters
出版日期2020
期号27页码:1690-1694
关键词Model adaptation siamese networks visual tracking
英文摘要

In this letter, we show that the challenging model adaptation task in visual object tracking can be handled by simply manipulating pixels of the template image in Siamese networks. For a target that is not included in the offline training set, a slight modification of the template image pixels will improve the prediction result of the offline trained Siamese network. The popular adversarial example generation methods can be used to perform template pixel manipulation for model adaptation. Different from current template update methods, which aim to combine the target features from previous frames, we focus on the initial adaptation using target ground-truth in the first frame. Our model adaptation method is pluggable, in the sense that it does not alter the overall architecture of its base tracker. To our knowledge, this work is the first attempt to directly manipulating template pixels for model adaptation in Siamese-based trackers. Extensive experiments on recent benchmarks demonstrate that our method achieves better performance than some other state-of-the-art trackers. Our code is available at https://github.com/lizhenbang56/MTP.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/46612]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
推荐引用方式
GB/T 7714
Li ZB. Manipulating Template Pixels For Model Adaptation Of Siamese Visual Tracking[J]. IEEE Signal Processing Letters,2020(27):1690-1694.
APA Li ZB.(2020).Manipulating Template Pixels For Model Adaptation Of Siamese Visual Tracking.IEEE Signal Processing Letters(27),1690-1694.
MLA Li ZB."Manipulating Template Pixels For Model Adaptation Of Siamese Visual Tracking".IEEE Signal Processing Letters .27(2020):1690-1694.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。