Globally Spatial-Temporal Perception: a Long-Term Tracking System
文献类型:会议论文
作者 | Li ZB(李振邦)![]() |
出版日期 | 2020 |
会议日期 | 2020-10-25 |
会议地点 | 在线 |
英文摘要 | Although siamese trackers have achieved superior performance, these kinds of approaches tend to favour the local search mechanism and are thus prone to accumulating inaccuracies of predicted positions, leading to tracking drift over time, especially in long-term tracking scenario. To solve these problems, we propose a siamese tracker in the spirit of the faster RCNN's two-stage detection paradigm. This new tracker is dedicated to reducing cumulative inaccuracies and improving robustness based on a global perception mechanism, which allows the target to be retrieved in time spatially over the whole image plane. Since the very deep network can be enabled for feature learning in this two-stage tracking framework, the power of discrimination is guaranteed. What's more, we also add a CNN-based trajectory prediction module exploiting the target's temporal motion information to mitigate the interference of distractors. These two spatial and temporal modules exploit both the high-level appearance information and complementary trajectory information to improve the tracking robustness. Comprehensive experiments demonstrate that the proposed Globally Spatial-Temporal Perception-based tracking system performs favorably against state-of-the-art trackers. |
源URL | [http://ir.ia.ac.cn/handle/173211/46613] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Li ZB. Globally Spatial-Temporal Perception: a Long-Term Tracking System[C]. 见:. 在线. 2020-10-25. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。