End-to-End Temporal Feature Aggregation for Siamese Trackers
文献类型:会议论文
作者 | Li ZB(李振邦)![]() |
出版日期 | 2020 |
会议日期 | 2020-10-25 |
会议地点 | 在线 |
英文摘要 | While siamese networks have demonstrated the significant improvement on object tracking performances, how to utilize the temporal information in siamese trackers has not been widely studied yet. In this paper, we introduce a novel siamese tracking architecture equipped with a temporal aggregation module, which improves the per-frame features by aggregating temporal information from adjacent frames. This temporal fusion strategy enables the siamese trackers to handle poor object appearance like motion blur, occlusion, etc. Furthermore, we incorporate the adversarial dropout module in the siamese network for computing discriminative target features in an end-to-end-fashion. Comprehensive experiments demonstrate that the proposed tracker performs favorably against state-of-the-art trackers. |
源URL | [http://ir.ia.ac.cn/handle/173211/46614] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Li ZB. End-to-End Temporal Feature Aggregation for Siamese Trackers[C]. 见:. 在线. 2020-10-25. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。