MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising
文献类型:期刊论文
作者 | Liu, Shuaiqi2; Lei, Yu4; Zhang, Luyao4; Li, Bing3![]() ![]() |
刊名 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
出版日期 | 2021-08-31 |
页码 | 13 |
关键词 | Noise reduction Radar polarimetry Feature extraction Speckle Transforms Synthetic aperture radar Image denoising Dual attention network feature extraction multiscale synthetic aperture radar (SAR) image denoising |
ISSN号 | 0196-2892 |
DOI | 10.1109/TGRS.2021.3106764 |
通讯作者 | Hu, Weiming(wmhu@nlpr.ia.ac.cn) |
英文摘要 | Synthetic aperture radar (SAR), due to its inherent characteristics, will produce speckle noise, which results in the deterioration of image quality, so the removal of speckle in SAR image is very important for the subsequent high-level image processing. In order to balance the relationship between denoising and texture preservation, we propose a multiscale residual dense dual attention network (MRDDANet) for SAR image denoising. This algorithm can effectively suppress the speckle while fully retaining the texture details of the image. In MRDDANet, shallow features are extracted from the noisy images by multiscale modules with different kernel sizes, and then, the extracted shallow features are mapped to the residual dense dual-attention network to obtain the deep features of SAR image. Finally, the final denoising image is generated through global residual learning. MRDDANet has advantages of both multiscale blocks and residual dense dual attention networks. The dense connection can fully extract features in the image, and the dual-channel attention enables MRDDANet to pay more attention to noise information, which is beneficial to remove noise and keep the details of the original image at the same time. Compared with state-of-the-art algorithms, the results of the experiment indicate that our method not only improves various objective indicators but also shows great advantages in visual effects. |
WOS关键词 | QUALITY ASSESSMENT ; TRANSFORM ; SHRINKAGE ; WAVELET ; FILTER ; NOISE |
资助项目 | National Natural Science Foundation of China[62172139] ; National Natural Science Foundation of China[61401308] ; Natural Science Foundation of Hebei Province[F2020201025] ; Natural Science Foundation of Hebei Province[F2019201151] ; Natural Science Foundation of Hebei Province[F2018210148] ; Science Research Project of Hebei Province[BJ2020030] ; Science Research Project of Hebei Province[QN2017306] ; Open Foundation of Guangdong Key Laboratory of Digital Signal and Image Processing Technology[2020GDDSIPL-04] ; High-Performance Computing Center of Hebei University |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000732766300001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Natural Science Foundation of Hebei Province ; Science Research Project of Hebei Province ; Open Foundation of Guangdong Key Laboratory of Digital Signal and Image Processing Technology ; High-Performance Computing Center of Hebei University |
源URL | [http://ir.ia.ac.cn/handle/173211/46935] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
通讯作者 | Hu, Weiming |
作者单位 | 1.Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England 2.Hebei Univ, Acad Sci, Coll Elect & Informat Engn, Machine Vis Engn Res Ctr Hebei Prov, Baoding 071002, Peoples R China 3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China 4.Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Shuaiqi,Lei, Yu,Zhang, Luyao,et al. MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2021:13. |
APA | Liu, Shuaiqi,Lei, Yu,Zhang, Luyao,Li, Bing,Hu, Weiming,&Zhang, Yu-Dong.(2021).MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,13. |
MLA | Liu, Shuaiqi,et al."MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (2021):13. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。