Fine-Grained Human-Centric Tracklet Segmentation with Single Frame Supervision
文献类型:期刊论文
作者 | Liu, Si4; Ren, Guanghui5; Sun, Yao5; Wang, Jinqiao1![]() |
刊名 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
![]() |
出版日期 | 2022-02-01 |
卷号 | 44期号:2页码:610-621 |
关键词 | Labeling Object segmentation Image segmentation Task analysis Semantics Training Face Video object segmentation human-centric fine-grained optical flow estimation |
ISSN号 | 0162-8828 |
DOI | 10.1109/TPAMI.2019.2911936 |
通讯作者 | Wang, Jinqiao(jqwang@nlpr.ia.ac.cn) |
英文摘要 | In this paper, we target at the Fine-grAined human-Centric Tracklet Segmentation (FACTS) problem, where 12 human parts, e.g., face, pants, left-leg, are segmented. To reduce the heavy and tedious labeling efforts, FACTS requires only one labeled frame per video during training. The small size of human parts and the labeling scarcity makes FACTS very challenging. Considering adjacent frames of videos are continuous and human usually do not change clothes in a short time, we explicitly consider the pixel-level and frame-level context in the proposed Temporal Context segmentation Network (TCNet). On the one hand, optical flow is on-line calculated to propagate the pixel-level segmentation results to neighboring frames. On the other hand, frame-level classification likelihood vectors are also propagated to nearby frames. By fully exploiting the pixel-level and frame-level context, TCNet indirectly uses the large amount of unlabeled frames during training and produces smooth segmentation results during inference. Experimental results on four video datasets show the superiority of TCNet over the state-of-the-arts. The newly annotated datasets can be downloaded via http://liusi-group.com/projects/FACTS for the further studies. |
资助项目 | National Key R&D Program of China[2016YFC0801003] ; Natural Science Foundation of China[U1536203] ; Natural Science Foundation of China[61572493] ; Natural Science Foundation of China[61876177] ; Natural Science Foundation of China[61772527] ; Natural Science Foundation of China[61806200] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000740006100006 |
出版者 | IEEE COMPUTER SOC |
资助机构 | National Key R&D Program of China ; Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/47190] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_图像与视频分析团队 |
通讯作者 | Wang, Jinqiao |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Qihoo 360 AI Inst, Beijing, Peoples R China 3.ByteDance AI Lab, Beijing, Peoples R China 4.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China 5.Chinese Acad Sci, Inst Informat Engn, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Si,Ren, Guanghui,Sun, Yao,et al. Fine-Grained Human-Centric Tracklet Segmentation with Single Frame Supervision[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2022,44(2):610-621. |
APA | Liu, Si.,Ren, Guanghui.,Sun, Yao.,Wang, Jinqiao.,Wang, Changhu.,...&Yan, Shuicheng.(2022).Fine-Grained Human-Centric Tracklet Segmentation with Single Frame Supervision.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,44(2),610-621. |
MLA | Liu, Si,et al."Fine-Grained Human-Centric Tracklet Segmentation with Single Frame Supervision".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 44.2(2022):610-621. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。