Decoupled Representation Learning for Skeleton-Based Gesture Recognition
文献类型:会议论文
作者 | Liu, Jianbo1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2020 |
会议日期 | 2020-6-14 |
会议地点 | Virtual |
英文摘要 | Skeleton-based gesture recognition is very challenging, as the high-level information in gesture is expressed by a sequence of complexly composite motions. Previous works often learn all the motions with a single model. In this paper, we propose to decouple the gesture into hand posture variations and hand movements, which are then modeled separately. For the former, the skeleton sequence is embedded into a 3D hand posture evolution volume (HPEV) to represent fine-grained posture variations. For the latter, the shifts |
源URL | [http://ir.ia.ac.cn/handle/173211/46595] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 中国科学院自动化研究所 |
通讯作者 | Wang, Ying |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences 2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Liu, Jianbo,Liu, Yongcheng,Wang, Ying,et al. Decoupled Representation Learning for Skeleton-Based Gesture Recognition[C]. 见:. Virtual. 2020-6-14. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。