A Doubly Graduated Method for Inference in Markov Random Field\ast
文献类型:期刊论文
作者 | Yang, Xu1,2![]() ![]() |
刊名 | SIAM JOURNAL ON IMAGING SCIENCES
![]() |
出版日期 | 2021 |
卷号 | 14期号:3页码:1354-1373 |
关键词 | maximum a posteriori Markov random field Gaussian smoothing continuous relaxation |
ISSN号 | 1936-4954 |
DOI | 10.1137/20M1383574 |
通讯作者 | Yang, Xu(xu.yang@ia.ac.cn) |
英文摘要 | Maximum a posteriori (MAP) inference in Markov random field (MRF) lays the foundation for many computer vision tasks, which can be formulated by a binary quadratic programming (BQP) problem. Compared with the discrete methods, the continuous relaxation scheme becomes popular due to its generality and efficiency. However, existing continuous relaxation based MAP algorithms are still limited by two problems, i.e., the highly nonconvex original objective function and the gap between the original BQP problem and the relaxed continuous optimization problem. Targeting the two problems, this paper presents a doubly graduated continuous relaxation algorithm for MAP inference in MRF, which are, respectively, the Gaussian smoothing based graduated nonconvexity process and conditional gradient ascent based graduated projection. Experiments on both synthetic data and real-world images illustrate the algorithm's state-of-the-art performance in objective function optimization and typical computer vision tasks. |
WOS关键词 | ENERGY MINIMIZATION |
资助项目 | National Natural Science Foundation (NSFC) of China[61973301] ; National Natural Science Foundation (NSFC) of China[61972020] ; National Natural Science Foundation (NSFC) of China[61633009] ; National Key R&D Program of China[2020AAA0108902] ; Beijing Science and Technology Plan Project[Z201100008320029] |
WOS研究方向 | Computer Science ; Mathematics ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000735767700006 |
出版者 | SIAM PUBLICATIONS |
资助机构 | National Natural Science Foundation (NSFC) of China ; National Key R&D Program of China ; Beijing Science and Technology Plan Project |
源URL | [http://ir.ia.ac.cn/handle/173211/47121] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Yang, Xu |
作者单位 | 1.Univ Chinese Acad Sci, Beijing, Peoples R China 2.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Xu,Liu, Zhi-Yong. A Doubly Graduated Method for Inference in Markov Random Field\ast[J]. SIAM JOURNAL ON IMAGING SCIENCES,2021,14(3):1354-1373. |
APA | Yang, Xu,&Liu, Zhi-Yong.(2021).A Doubly Graduated Method for Inference in Markov Random Field\ast.SIAM JOURNAL ON IMAGING SCIENCES,14(3),1354-1373. |
MLA | Yang, Xu,et al."A Doubly Graduated Method for Inference in Markov Random Field\ast".SIAM JOURNAL ON IMAGING SCIENCES 14.3(2021):1354-1373. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。