CANet: Co-attention network for RGB-D semantic segmentation
文献类型:期刊论文
作者 | Zhou, Hao2,3,5; Qi, Lu4![]() ![]() |
刊名 | PATTERN RECOGNITION
![]() |
出版日期 | 2022-04-01 |
卷号 | 124页码:11 |
关键词 | RGB-D Multi -modal fusion Co-attention Semantic segmentation |
ISSN号 | 0031-3203 |
DOI | 10.1016/j.patcog.2021.108468 |
通讯作者 | Huang, Hai(haihus@163.com) |
英文摘要 | Incorporating the depth (D) information to RGB images has proven the effectiveness and robustness in semantic segmentation. However, the fusion between them is not trivial due to their inherent physical meaning discrepancy, in which RGB represents RGB information but D depth information. In this paper, we propose a co-attention network (CANet) to build sound interaction between RGB and depth features. The key part in the CANet is the co-attention fusion part. It includes three modules. Specifically, the po-sition and channel co-attention fusion modules adaptively fuse RGB and depth features in spatial and channel dimensions. An additional fusion co-attention module further integrates the outputs of the posi-tion and channel co-attention fusion modules to obtain a more representative feature which is used for the final semantic segmentation. Extensive experiments witness the effectiveness of the CANet in fus-ing RGB and depth features, achieving state-of-the-art performance on two challenging RGB-D semantic segmentation datasets, i.e., NYUDv2 and SUN-RGBD. (c) 2021 Elsevier Ltd. All rights reserved. |
WOS关键词 | FEATURES |
资助项目 | National Natural Science Foundation (NSFC) of China[61633009] ; National Natural Science Foundation (NSFC) of China[61973301] ; National Natural Science Foundation (NSFC) of China[61972020] ; National Natural Science Foundation (NSFC) of China[51579053] ; National Natural Science Foundation (NSFC) of China[51779058] ; Beijing Science and Technology Plan Project[Z18110 0 0 08918018] ; National Key R&D Program of China[2016YFC0300801] ; National Key R&D Program of China[2017YFB1300202] ; National Key R&D Program of China[2020AAA0108902] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000736972200013 |
出版者 | ELSEVIER SCI LTD |
资助机构 | National Natural Science Foundation (NSFC) of China ; Beijing Science and Technology Plan Project ; National Key R&D Program of China |
源URL | [http://ir.ia.ac.cn/handle/173211/47130] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Huang, Hai |
作者单位 | 1.Jihua Lab, Foshan, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China 4.Chinese Univ Hong Kong, Hong Kong, Peoples R China 5.Harbin Engn Univ, Natl Key Lab Sci & Technol Underwater Vehicle, Harbin, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Hao,Qi, Lu,Huang, Hai,et al. CANet: Co-attention network for RGB-D semantic segmentation[J]. PATTERN RECOGNITION,2022,124:11. |
APA | Zhou, Hao,Qi, Lu,Huang, Hai,Yang, Xu,Wan, Zhaoliang,&Wen, Xianglong.(2022).CANet: Co-attention network for RGB-D semantic segmentation.PATTERN RECOGNITION,124,11. |
MLA | Zhou, Hao,et al."CANet: Co-attention network for RGB-D semantic segmentation".PATTERN RECOGNITION 124(2022):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。