Neuro-Optimal Trajectory Tracking With Value Iteration of Discrete-Time Nonlinear Dynamics
文献类型:期刊论文
作者 | Wang, Ding2,3![]() ![]() |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2021-11-08 |
页码 | 12 |
关键词 | Trajectory Heuristic algorithms Convergence Trajectory tracking Stability criteria Optimal control Dynamic programming Adaptive critic design discrete-time nonlinear plants neuro-optimal trajectory tracking uniformly ultimately bounded stability value iteration |
ISSN号 | 2162-237X |
DOI | 10.1109/TNNLS.2021.3123444 |
通讯作者 | Wang, Ding(dingwang@bjut.edu.cn) |
英文摘要 | In this article, a novel neuro-optimal tracking control approach is developed toward discrete-time nonlinear systems. By constructing a new augmented plant, the optimal trajectory tracking design is transformed into an optimal regulation problem. For discrete-time nonlinear dynamics, the steady control input corresponding to the reference trajectory is given. Then, the value-iteration-based tracking control algorithm is provided and the convergence of the value function sequence is established. Therein, the approximation error between the iterative value function and the optimal cost is estimated. The uniformly ultimately bounded stability of the closed-loop system is also discussed in detail. Moreover, the iterative heuristic dynamic programming (HDP) algorithm is implemented by involving the critic and action components, where some new updating rules of the action network are provided. Finally, two examples are used to demonstrate the optimality of the present controller as well as the effectiveness of the proposed method. |
WOS关键词 | ADAPTIVE-CONTROL ; LINEAR-SYSTEMS ; STABILITY |
资助项目 | Beijing Natural Science Foundation[JQ19013] ; National Natural Science Foundation of China[61773373] ; National Natural Science Foundation of China[61873268] ; National Natural Science Foundation of China[62025307] ; National Natural Science Foundation of China[61890930-5] ; National Natural Science Foundation of China[62021003] ; National Key Research and Development Project[2018YFC1900800-5] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000733510800001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Beijing Natural Science Foundation ; National Natural Science Foundation of China ; National Key Research and Development Project |
源URL | [http://ir.ia.ac.cn/handle/173211/46938] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
通讯作者 | Wang, Ding |
作者单位 | 1.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China 2.Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China 3.Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 5.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Ding,Ha, Mingming,Cheng, Long. Neuro-Optimal Trajectory Tracking With Value Iteration of Discrete-Time Nonlinear Dynamics[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2021:12. |
APA | Wang, Ding,Ha, Mingming,&Cheng, Long.(2021).Neuro-Optimal Trajectory Tracking With Value Iteration of Discrete-Time Nonlinear Dynamics.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,12. |
MLA | Wang, Ding,et al."Neuro-Optimal Trajectory Tracking With Value Iteration of Discrete-Time Nonlinear Dynamics".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2021):12. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。