Self-Learning Robust Control Synthesis and Trajectory Tracking of Uncertain Dynamics
文献类型:期刊论文
作者 | Wang, Ding1,5,6![]() ![]() |
刊名 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
出版日期 | 2022 |
卷号 | 52期号:1页码:278-286 |
关键词 | Robust control Optimal control Cost function Trajectory tracking Nonlinear systems Feedback control Dynamical systems Adaptive critic learning control synthesis neural networks optimization robust stabilization tracking design |
ISSN号 | 2168-2267 |
DOI | 10.1109/TCYB.2020.2979694 |
通讯作者 | Wang, Ding(dingwang@bjut.edu.cn) |
英文摘要 | In this article, we investigate the self-learning robust control synthesis and tracking design of general uncertain dynamical systems. Based on the adaptive critic learning, the robust stabilization method is developed with the help of conducting problem transformation. In addition, by considering the optimal control solution with a discounted cost function, the established method is extended to address the robust trajectory tracking design problem. The Lyapunov stability analysis is also conducted for proving the robustness of the related control plants. Finally, the simulation verification with the three case studies is provided in terms of robust stabilization and trajectory tracking, respectively. |
WOS关键词 | STABILIZATION |
资助项目 | Beijing Natural Science Foundation[JQ19013] ; Beijing Natural Science Foundation[JQ19020] ; National Natural Science Foundation of China[61773373] ; National Natural Science Foundation of China[61873268] ; National Natural Science Foundation of China[U1913209] ; Natural Sciences and Engineering Research Council of Canada[RGPIN-2018-06724] ; Natural Sciences and Engineering Research Council of Canada[DGECR-2018-00022] |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000742182700027 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Beijing Natural Science Foundation ; National Natural Science Foundation of China ; Natural Sciences and Engineering Research Council of Canada |
源URL | [http://ir.ia.ac.cn/handle/173211/47331] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
通讯作者 | Wang, Ding |
作者单位 | 1.Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China 2.Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1M8, Canada 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 5.Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China 6.Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Ding,Cheng, Long,Yan, Jun. Self-Learning Robust Control Synthesis and Trajectory Tracking of Uncertain Dynamics[J]. IEEE TRANSACTIONS ON CYBERNETICS,2022,52(1):278-286. |
APA | Wang, Ding,Cheng, Long,&Yan, Jun.(2022).Self-Learning Robust Control Synthesis and Trajectory Tracking of Uncertain Dynamics.IEEE TRANSACTIONS ON CYBERNETICS,52(1),278-286. |
MLA | Wang, Ding,et al."Self-Learning Robust Control Synthesis and Trajectory Tracking of Uncertain Dynamics".IEEE TRANSACTIONS ON CYBERNETICS 52.1(2022):278-286. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。