AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks
文献类型:期刊论文
作者 | Wei Zhang![]() ![]() ![]() ![]() ![]() |
刊名 | Transportation Research Part C
![]() |
出版日期 | 2022 |
期号 | 99页码:1-1 |
关键词 | Adaptive graph learning, Traffic prediction, Graph convolutional network, Expectation maximization, Deep learning |
英文摘要 | With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the djacency |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/47496] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Fenghua Zhu; Yisheng Lv |
推荐引用方式 GB/T 7714 | Wei Zhang,Fenghua Zhu,Yisheng Lv,et al. AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks[J]. Transportation Research Part C,2022(99):1-1. |
APA | Wei Zhang.,Fenghua Zhu.,Yisheng Lv.,Chang Tan.,Wen Liu.,...&Fei-Yue Wang.(2022).AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks.Transportation Research Part C(99),1-1. |
MLA | Wei Zhang,et al."AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks".Transportation Research Part C .99(2022):1-1. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。