中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
TextEdge: Multi-oriented Scene Text Detection via Region Segmentation and Edge Classification

文献类型:会议论文

作者Du C(杜臣); Wang CH(王春恒)
出版日期2019
会议日期2019-9
会议地点Sydney, NSW, Australia
关键词scene text detection semantic segmentation text edge information multi-task learn
DOI10.1109/ICDAR.2019.00067
英文摘要

The semantic-segmentation-based scene text detection algorithms always use the bounding-box regions or their shrinks to represent the text pixels. However, the nontext pixel information in these regions easily results in the poor performance of text detection, because these semantic segmentation methods need accurate pixel-level annotated training data to achieve approving performance and they are sensitive to noise and interference. In this work, we propose a fully convolutional network (FCN) based method termed TextEdge for multi-oriented scene text detection. Compared with previous methods simply using bounding-box regions as a segmentation mask, TextEdge introduces the text-region edge map as a new segmentation mask. Edge information is more representative for text areas and is proved to be effective in improving detection performance. TextEdge is optimized in an end-to-end way with multi-task outputs: text and nontext classification, text-edge prediction and the text boundaries regression. Experiments on standard datasets demonstrate that the proposed method achieves state-of-the-art performance in both accuracy and efficiency. Specifically, it achieves an F-score of 0.88 on ICDAR 2013 dataset and 0.86 on ICDAR 2015 dataset.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/46633]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_影像分析与机器视觉团队
通讯作者Wang CH(王春恒)
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Du C,Wang CH. TextEdge: Multi-oriented Scene Text Detection via Region Segmentation and Edge Classification[C]. 见:. Sydney, NSW, Australia. 2019-9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。