TextEdge: Multi-oriented Scene Text Detection via Region Segmentation and Edge Classification
文献类型:会议论文
作者 | Du C(杜臣)![]() ![]() |
出版日期 | 2019 |
会议日期 | 2019-9 |
会议地点 | Sydney, NSW, Australia |
关键词 | scene text detection semantic segmentation text edge information multi-task learn |
DOI | 10.1109/ICDAR.2019.00067 |
英文摘要 | The semantic-segmentation-based scene text detection algorithms always use the bounding-box regions or their shrinks to represent the text pixels. However, the nontext pixel information in these regions easily results in the poor performance of text detection, because these semantic segmentation methods need accurate pixel-level annotated training data to achieve approving performance and they are sensitive to noise and interference. In this work, we propose a fully convolutional network (FCN) based method termed TextEdge for multi-oriented scene text detection. Compared with previous methods simply using bounding-box regions as a segmentation mask, TextEdge introduces the text-region edge map as a new segmentation mask. Edge information is more representative for text areas and is proved to be effective in improving detection performance. TextEdge is optimized in an end-to-end way with multi-task outputs: text and nontext classification, text-edge prediction and the text boundaries regression. Experiments on standard datasets demonstrate that the proposed method achieves state-of-the-art performance in both accuracy and efficiency. Specifically, it achieves an F-score of 0.88 on ICDAR 2013 dataset and 0.86 on ICDAR 2015 dataset. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/46633] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_影像分析与机器视觉团队 |
通讯作者 | Wang CH(王春恒) |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Du C,Wang CH. TextEdge: Multi-oriented Scene Text Detection via Region Segmentation and Edge Classification[C]. 见:. Sydney, NSW, Australia. 2019-9. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。