BNAS-v2: Memory-efficient and Performance-collapse-prevented Broad Neural Architecture Search
文献类型:期刊论文
作者 | Zixiang, Ding1,2![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
![]() |
出版日期 | 2022-01 |
卷号 | 0期号:0页码:0 |
关键词 | Broad neural architecture search (BNAS), continuous relaxation, confident learning rate, partial channel connections, image classification. |
英文摘要 | In this paper, we propose BNAS-v2 to further |
语种 | 英语 |
WOS记录号 | WOS:000750216400001 |
源URL | [http://ir.ia.ac.cn/handle/173211/46597] ![]() |
专题 | 复杂系统管理与控制国家重点实验室_深度强化学习 |
通讯作者 | Dongbin, Zhao |
作者单位 | 1.the State Key Laboratory of Management and Control for Complex Systems,Institute of Automation, Chinese Academy of Sciences 2.the School of Artificial Intelligence, University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Zixiang, Ding,Yaran, Chen,Nannan, Li,et al. BNAS-v2: Memory-efficient and Performance-collapse-prevented Broad Neural Architecture Search[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS,2022,0(0):0. |
APA | Zixiang, Ding,Yaran, Chen,Nannan, Li,&Dongbin, Zhao.(2022).BNAS-v2: Memory-efficient and Performance-collapse-prevented Broad Neural Architecture Search.IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS,0(0),0. |
MLA | Zixiang, Ding,et al."BNAS-v2: Memory-efficient and Performance-collapse-prevented Broad Neural Architecture Search".IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 0.0(2022):0. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。