中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Entity Recommendation with Negative Feedback Memory Networks for Topic-oriented Knowledge Graph Exploration

文献类型:期刊论文

作者Yang, Yi; Li, Meng; Wang, Jian; Huang, Weixing; Wang,Yun
刊名IEEE Transactions on Reliability
出版日期2022
卷号71期号:2页码:0
关键词entity recommendation knowledge graph negative feedback memory network knowledge graph exploration
英文摘要

Knowledge Graph Exploration is an interactive knowledge discovery process over the knowledge graph. Entity recommendation deals with the information overflow issue when exploring the large-scale unfamiliar knowledge graphs. The traditional personalized entity recommendation methods for knowledge graph explorations rarely consider the adaptive topic-oriented long-term positive- and negative intent modelling. In this paper, we propose a topic-oriented entity recommendation method during the knowledge graph exploration. We build a Negative Feedback Memory Network model for obtaining the user's long-term negative intents. We propose a Transformer-based sequence encoder for the positive intents. We dynamically obtain the adaptive intents by aggregating the positive- and negative intents by the proposed Intent Attention mechanism. Experiments show that our method has advantages in TopK entity recommendations.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/47403]  
专题数字内容技术与服务研究中心_智能技术与系统工程
通讯作者Wang, Jian
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yang, Yi,Li, Meng,Wang, Jian,et al. Entity Recommendation with Negative Feedback Memory Networks for Topic-oriented Knowledge Graph Exploration[J]. IEEE Transactions on Reliability,2022,71(2):0.
APA Yang, Yi,Li, Meng,Wang, Jian,Huang, Weixing,&Wang,Yun.(2022).Entity Recommendation with Negative Feedback Memory Networks for Topic-oriented Knowledge Graph Exploration.IEEE Transactions on Reliability,71(2),0.
MLA Yang, Yi,et al."Entity Recommendation with Negative Feedback Memory Networks for Topic-oriented Knowledge Graph Exploration".IEEE Transactions on Reliability 71.2(2022):0.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。