Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks
文献类型:期刊论文
作者 | Zhang, Tielin2,3![]() ![]() ![]() ![]() |
刊名 | SCIENCE ADVANCES
![]() |
出版日期 | 2021-10-01 |
卷号 | 7期号:43页码:11 |
ISSN号 | 2375-2548 |
DOI | 10.1126/sciadv.abh0146 |
通讯作者 | Xu, Bo(xubo@ia.ac.cn) |
英文摘要 | Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks (ANNs). We showed that incorporating a nonlocal feature of synaptic plasticity found in natural neural networks, whereby synaptic modification at output synapses of a neuron backpropagates to its input synapses made by upstream neurons, markedly reduced the computational cost without affecting the accuracy of spiking neural networks (SNNs) and ANNs in supervised learning for three benchmark tasks. For SNNs, synaptic modification at output neurons generated by spike timing-dependent plasticity was allowed to self-propagate to limited upstream synapses. For ANNs, modified synaptic weights via conventional backpropagation algorithm at output neurons self-backpropagated to limited upstream synapses. Such self-propagating plasticity may produce coordinated synaptic modifications across neuronal layers that reduce computational cost. |
WOS关键词 | LONG-TERM POTENTIATION ; PROPAGATION ; NEURONS ; MEMORY ; MODEL |
资助项目 | National Key R&D Program of China[2020AAA0104305] ; National Natural Science Foundation of China[61806195] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA27010404] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB32070000] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[QYZDY-SSW-SMCO01] ; International Partnership Program of Chinese Academy of Sciences[153D31KYSB20170059] ; Shanghai Municipal Science and Technology Major Project[2018SHZDZX05] ; Shanghai Key Basic Research Project[18JC1410100] |
WOS研究方向 | Science & Technology - Other Topics |
语种 | 英语 |
WOS记录号 | WOS:000711845800010 |
出版者 | AMER ASSOC ADVANCEMENT SCIENCE |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences ; International Partnership Program of Chinese Academy of Sciences ; Shanghai Municipal Science and Technology Major Project ; Shanghai Key Basic Research Project |
源URL | [http://ir.ia.ac.cn/handle/173211/46359] ![]() |
专题 | 数字内容技术与服务研究中心_听觉模型与认知计算 类脑智能研究中心_类脑认知计算 |
通讯作者 | Xu, Bo |
作者单位 | 1.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China 2.Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 4.Shanghai Ctr Brain Sci & Brain Inspired Intellige, Shanghai 201210, Peoples R China 5.Chinese Acad Sci, Inst Neurosci, State Key Lab Neurosci, Shanghai 200031, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Tielin,Cheng, Xiang,Jia, Shuncheng,et al. Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks[J]. SCIENCE ADVANCES,2021,7(43):11. |
APA | Zhang, Tielin,Cheng, Xiang,Jia, Shuncheng,Poo, Mu-Ming,Zeng, Yi,&Xu, Bo.(2021).Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks.SCIENCE ADVANCES,7(43),11. |
MLA | Zhang, Tielin,et al."Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks".SCIENCE ADVANCES 7.43(2021):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。