Fault detection and diagnosis of the air handling unit via an enhanced kernel slow feature analysis approach considering the time-wise and batch-wise dynamics
文献类型:期刊论文
作者 | Zhang, Hanyuan2; Li, Chengdong2; Li, Ding1; Zhang, Yunchu2; Peng, Wei2 |
刊名 | ENERGY AND BUILDINGS
![]() |
出版日期 | 2021-12-15 |
卷号 | 253页码:22 |
关键词 | Air handling unit Fault detection and diagnosis Kernel slow feature analysis Multiway data analysis Discriminant analysis |
ISSN号 | 0378-7788 |
DOI | 10.1016/j.enbuild.2021.111467 |
通讯作者 | Li, Chengdong(lichengdong@sdjzu.edu.cn) |
英文摘要 | Air handling unit (AHU) is a typical special batch control process, exhibiting strong nonlinear property and two-directional dynamic characteristics which are the time-wise and batch-wise dynamic characteristics. Specifically, the time-wise dynamic characteristic corresponds to the evolution of different operating modes caused by the underlying driving forces which vary slowly in each running day (a batch run), while the batch-wise dynamic characteristic relates to the dynamic variations and deviations among different running days (batch runs). In order to further improve the AHU FDD performance through capturing the underlying driving forces of the AHU system and tackling the batch-wise dynamic property between different batch runs, in this paper, an enhanced kernel slow feature analysis (SFA) based FDD scheme is developed to detect and identify the faults of the nonlinear AHU system. Firstly, a threeway data based kernel SFA (TBKSFA) approach is proposed to detect the faults. In the proposed TBKSFA approach, the kernel trick is adopted in the SFA to sufficiently deal with the nonlinearity and the time-wise dynamic characteristic, and the multiway data analysis is employed to cope with the batch-wise dynamics among different batch runs by converting the three-way training dataset into a variable-wise unfolding two-way matrix. In addition, to handle the tough problem of nonlinearly identifying the fault pattern, a novel kernel discriminant SFA (KDSFA) model is further built by combining the kernel SFA with the discriminant analysis method. In the fault pattern diagnosis process, the proposed KDSFA is pairwisely implemented on the normal and fault datasets to calculate the fault direction, and the fault is then identified by computing the similar degrees of its own fault direction and the historical fault directions. At last, experiments and comparisons on the FDD performance of the developed approach are made using the experimental data provided by ASHRAE Research Project RP-1312. To be specific, the proposed TBKSFA based fault detection method is compared with the popular kernel principal component analysis (KPCA) method, the closely related kernel SFA method and the emerging manifold learning based kernel locality preserving projections (KLPP) method. While the developed KDSFA based fault pattern diagnosis scheme is compared with the conventional jointed angle analysis technique, the strongly linked DSFA based method and the rising artificial neural networks based long short-term memory(LSTM) classifier. Experimental results demonstrate that significant improvements can be achieved by the proposed approach compared with some other popular methods. (c) 2021 Elsevier B.V. All rights reserved. |
WOS关键词 | NONLINEAR-SYSTEMS ; BAYESIAN NETWORK ; STRATEGY ; PCA |
资助项目 | Taishan Scholar Project of Shandong Province[TSQN201812092] ; National Natural Science Foundation of China[62003191] ; National Natural Science Foundation of China[62076150] ; National Natural Science Foundation of China[61903226] ; National Natural Science Foundation of China[62133008] ; Natural Science Foundation of Shandong Province[ZR2020QF072] ; Key Research and Development Program of Shandong Province[2019GGX101072] ; Key Research and Development Program of Shandong Province[2019JZZY010115] ; Key Research and Development Program of Shandong Province[2019JZZY010120] ; Youth Innovation Technology Project of Higher School in Shandong Province[2019KJN005] ; Doctoral Research Fund Project of Shandong Jianzhu University[XNBS1821] |
WOS研究方向 | Construction & Building Technology ; Energy & Fuels ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000709730100010 |
出版者 | ELSEVIER SCIENCE SA |
资助机构 | Taishan Scholar Project of Shandong Province ; National Natural Science Foundation of China ; Natural Science Foundation of Shandong Province ; Key Research and Development Program of Shandong Province ; Youth Innovation Technology Project of Higher School in Shandong Province ; Doctoral Research Fund Project of Shandong Jianzhu University |
源URL | [http://ir.ia.ac.cn/handle/173211/46294] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Li, Chengdong |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Shandong Jianzhu Univ, Sch Informat & Elect Engn, Shandong Key Lab Intelligent Bldg Technol, Jinan 250101, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Hanyuan,Li, Chengdong,Li, Ding,et al. Fault detection and diagnosis of the air handling unit via an enhanced kernel slow feature analysis approach considering the time-wise and batch-wise dynamics[J]. ENERGY AND BUILDINGS,2021,253:22. |
APA | Zhang, Hanyuan,Li, Chengdong,Li, Ding,Zhang, Yunchu,&Peng, Wei.(2021).Fault detection and diagnosis of the air handling unit via an enhanced kernel slow feature analysis approach considering the time-wise and batch-wise dynamics.ENERGY AND BUILDINGS,253,22. |
MLA | Zhang, Hanyuan,et al."Fault detection and diagnosis of the air handling unit via an enhanced kernel slow feature analysis approach considering the time-wise and batch-wise dynamics".ENERGY AND BUILDINGS 253(2021):22. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。