中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Classifying Clear Air Echoes via Static and Motion Streams Network

文献类型:期刊论文

作者Qu, Yuxun1,3; Zhang, Chenyang1; Yang, Xuebing1; Wu, Yajing1; Zhang, Wensheng1,3; Zhang, Guoping2
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2022
卷号19页码:5
关键词Radar Radar imaging Atmospheric modeling Training Streaming media Image segmentation Image sequences Classification of nonprecipitation echoes clear air echoes feature fusion radar image segmentation
ISSN号1545-598X
DOI10.1109/LGRS.2021.3097098
通讯作者Yang, Xuebing(yangxuebing2013@ia.ac.cn) ; Zhang, Wensheng(zhangwenshengia@hotmail.com)
英文摘要Classification of nonprecipitation echoes of radar is an inevitable step in radar-based precipitation estimation. Among nonprecipitation echoes, clear air echoes are specifically difficult to distinguish for their similarity to precipitation echoes. This letter aims to conduct a pixelwise classification of clear air echoes for image sequences of the radar reflectivity. We propose the Static and Motion streams Network (SMNet) to simultaneously utilize the static and motion features. SMNet realizes capturing the spatiotemporal characteristics while maintaining the details of the current frame via a fusion structure and a novel training method. For feature fusion, the static and motion streams are concatenated. Then, for model training, we adopt a dynamic weight assignment strategy to further extract rich information. Finally, we validate our method on an S-band single-polarization radar in Beijing, China, from May to September 2018. The results demonstrate that the overall performance of SMNet is superior to other competitors.
WOS关键词NONPRECIPITATING ECHOES ; WEATHER RADAR
资助项目National Key Research and Development Program of China[2018YFB1404400] ; National Natural Science Foundation of China[61906190] ; National Natural Science Foundation of China[41871020] ; National Natural Science Foundation of China[61806202]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000731151800034
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/46986]  
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Yang, Xuebing; Zhang, Wensheng
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.China Meteorol Adm CMA, Publ Meteorol Serv Ctr, Beijing 100081, Peoples R China
3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Qu, Yuxun,Zhang, Chenyang,Yang, Xuebing,et al. Classifying Clear Air Echoes via Static and Motion Streams Network[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2022,19:5.
APA Qu, Yuxun,Zhang, Chenyang,Yang, Xuebing,Wu, Yajing,Zhang, Wensheng,&Zhang, Guoping.(2022).Classifying Clear Air Echoes via Static and Motion Streams Network.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,19,5.
MLA Qu, Yuxun,et al."Classifying Clear Air Echoes via Static and Motion Streams Network".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 19(2022):5.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。