中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Inductive Spatiotemporal Graph Convolutional Networks for Short-term Quantitative Precipitation Forecasting

文献类型:期刊论文

作者Yajing, Wu; Xuebing, Yang; Yongqiang, Tang; Chenyang, Zhang; Guoping, Zhang; Wensheng, Zhang
刊名IEEE Transactions on Geoscience and Remote Sensing
出版日期2022
卷号0期号:0页码:0
关键词Quantitative precipitation forecasting graph convolutional networks (GCN) spatiotemporal model radar-rain gauge data merging
DOI10.1109/TGRS.2022.3159530
英文摘要

Short-term Quantitative Precipitation Forecasting (SQPF) using weather radar is an important but challenging problem as one must cope with inherent nonlinearity and spatiotemporal correlation in the data. In this paper, we propose a novel deep learning model, named Inductive spatiotemporal Graph Convolutional Networks (InstGCN), to overcome these issues in SQPF. The proposed InstGCN can learn a nonlinear mapping from historical radar reflectivity to future rainfall amounts, and extract informative spatiotemporal representations simultaneously. Specifically, we first provide a formal definition for formulating the SQPF problem from a graph perspective. Then, based on radar reflectivity and rain gauge observation, we propose a novel graph construction approach which utilizes a special elliptic structure to model the spatial dependency of precipitation area. Additionally, a new Node level Differential Block (Node-DB) is introduced to tackle the non-stationary temporal dependency. To execute inductive graph learning for unseen nodes, we design to decompose a whole graph into sub-graphs. We conduct extensive experiments on three real-world datasets in East China and a public weather radar dataset in the south-eastern parts of France. The experimental results confirm the advantages of InstGCN compared with several state-of-the-arts.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/47443]  
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Xuebing, Yang; Yongqiang, Tang
作者单位1.the Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.the Public Meteorological Service Center of CMA
4.the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yajing, Wu,Xuebing, Yang,Yongqiang, Tang,et al. Inductive Spatiotemporal Graph Convolutional Networks for Short-term Quantitative Precipitation Forecasting[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,0(0):0.
APA Yajing, Wu,Xuebing, Yang,Yongqiang, Tang,Chenyang, Zhang,Guoping, Zhang,&Wensheng, Zhang.(2022).Inductive Spatiotemporal Graph Convolutional Networks for Short-term Quantitative Precipitation Forecasting.IEEE Transactions on Geoscience and Remote Sensing,0(0),0.
MLA Yajing, Wu,et al."Inductive Spatiotemporal Graph Convolutional Networks for Short-term Quantitative Precipitation Forecasting".IEEE Transactions on Geoscience and Remote Sensing 0.0(2022):0.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。