中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Bifurcated Backbone Strategy for RGB-D Salient Object Detection

文献类型:期刊论文

作者Zhai, Yingjie5; Fan, Deng-Ping5; Yang, Jufeng5; Borji, Ali1; Shao, Ling4; Han, Junwei3; Wang, Liang2
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2021
卷号30页码:8727-8742
关键词RGB-D salient object detection bifurcated backbone strategy multi-level features cascaded refinement
ISSN号1057-7149
DOI10.1109/TIP.2021.3116793
通讯作者Yang, Jufeng()
英文摘要Multi-level feature fusion is a fundamental topic in computer vision. It has been exploited to detect, segment and classify objects at various scales. When multi-level features meet multi-modal cues, the optimal feature aggregation and multi-modal learning strategy become a hot potato. In this paper, we leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to devise a novel Bifurcated Backbone Strategy Network (BBS-Net). Our architecture, is simple, efficient, and backbone-independent. In particular, first, we propose to regroup the multi-level features into teacher and student features using a bifurcated backbone strategy (BBS). Second, we introduce a depth-enhanced module (DEM) to excavate informative depth cues from the channel and spatial views. Then, RGB and depth modalities are fused in a complementary way. Extensive experiments show that BBS-Net significantly outperforms 18 state-of-the-art (SOTA) models on eight challenging datasets under five evaluation measures, demonstrating the superiority of our approach (similar to 4% improvement in S-measure vs. the top-ranked model: DMRA). In addition, we provide a comprehensive analysis on the generalization ability of different RGB-D datasets and provide a powerful training set for future research. The complete algorithm, benchmark results, and post-processing toolbox are publicly available at https://github.com/zyjwuyan/BBS-Net.
WOS关键词REGION DETECTION ; FUSION ; CONTRAST ; NETWORK ; IMAGE ; MODEL
资助项目National Key Research and Development Program of China[2018AAA0100403] ; NSFC[61876094] ; NSFC[U1933114] ; Natural Science Foundation of Tianjin, China[20JCJQJC00020] ; Natural Science Foundation of Tianjin, China[18JCYBJC15400] ; Natural Science Foundation of Tianjin, China[18ZXZNGX00110]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000711755100006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; NSFC ; Natural Science Foundation of Tianjin, China
源URL[http://ir.ia.ac.cn/handle/173211/46276]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Yang, Jufeng
作者单位1.Primer Technol Inc, San Francisco, CA 94111 USA
2.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
4.Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
5.Nankai Univ, Coll Comp Sci, Tianjin 300350, Peoples R China
推荐引用方式
GB/T 7714
Zhai, Yingjie,Fan, Deng-Ping,Yang, Jufeng,et al. Bifurcated Backbone Strategy for RGB-D Salient Object Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:8727-8742.
APA Zhai, Yingjie.,Fan, Deng-Ping.,Yang, Jufeng.,Borji, Ali.,Shao, Ling.,...&Wang, Liang.(2021).Bifurcated Backbone Strategy for RGB-D Salient Object Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,8727-8742.
MLA Zhai, Yingjie,et al."Bifurcated Backbone Strategy for RGB-D Salient Object Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):8727-8742.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。