中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching

文献类型:期刊论文

作者Zheng, Aihua2,3; Hu, Menglan2,3; Jiang, Bo2,3,4; Huang, Yan5; Yan, Yan1; Luo, Bin2,3
刊名IEEE TRANSACTIONS ON MULTIMEDIA
出版日期2022
卷号24页码:338-351
关键词Visualization Task analysis Measurement Speech recognition Videos Location awareness Image recognition Adversarial learning audio-visual matching cross-modal learning metric learning
ISSN号1520-9210
DOI10.1109/TMM.2021.3050089
通讯作者Jiang, Bo(jiangbo@ahu.edu.cn)
英文摘要Audio-visual matching aims to learn the intrinsic correspondence between image and audio clip. Existing works mainly concentrate on learning discriminative features, while ignore the cross-modal heterogeneous issue between audio and visual modalities. To deal with this issue, we propose a novel Adversarial-Metric Learning (AML) model for audio-visual matching. AML aims to generate a modality-independent representation for each person in each modality via adversarial learning, while simultaneously learns a robust similarity measure for cross-modality matching via metric learning. By integrating the discriminative modality-independent representation and robust cross-modality metric learning into an end-to-end trainable deep network, AML can overcome the heterogeneous issue with promising performance for audio-visual matching. Experiments on the various audio-visual learning tasks, including audio-visual matching, audio-visual verification and audio-visual retrieval on benchmark dataset demonstrate the effectiveness of the proposed AML model. The implementation codes are available on https://github.com/MLanHu/AML.
WOS关键词FACE ; IDENTITY ; SPEECH ; VOICE
资助项目Major Project for New Generation of AI[2018AAA0100400] ; National Natural Science Foundation of China[61976002] ; National Natural Science Foundation of China[62076004] ; Natural Science Foundation of Anhui Higher Education Institutions of China[KJ2019A0033] ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR)[201900046] ; Cooperative Research Project Program of Nanjing Artificial Intelligence Chip Research, Institute of Automation, Chinese Academy of Sciences
WOS研究方向Computer Science ; Telecommunications
语种英语
WOS记录号WOS:000745524300026
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构Major Project for New Generation of AI ; National Natural Science Foundation of China ; Natural Science Foundation of Anhui Higher Education Institutions of China ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR) ; Cooperative Research Project Program of Nanjing Artificial Intelligence Chip Research, Institute of Automation, Chinese Academy of Sciences
源URL[http://ir.ia.ac.cn/handle/173211/47343]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Jiang, Bo
作者单位1.IIT, Dept Comp Sci, Chicago, IL 60616 USA
2.Minist Educ, Key Lab Intelligent Comp & Signal Proc, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei, Peoples R China
3.Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
4.Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
5.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Aihua,Hu, Menglan,Jiang, Bo,et al. Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2022,24:338-351.
APA Zheng, Aihua,Hu, Menglan,Jiang, Bo,Huang, Yan,Yan, Yan,&Luo, Bin.(2022).Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching.IEEE TRANSACTIONS ON MULTIMEDIA,24,338-351.
MLA Zheng, Aihua,et al."Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching".IEEE TRANSACTIONS ON MULTIMEDIA 24(2022):338-351.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。