中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions

文献类型:期刊论文

作者Mohamed Amine Ferrag; Lei Shu; Othmane Friha; Xing Yang
刊名IEEE/CAA Journal of Automatica Sinica
出版日期2022
卷号9期号:3页码:407-436
关键词Agriculture 4.0 cyber security intrusion detection system machine learning approaches smart agriculture
ISSN号2329-9266
DOI10.1109/JAS.2021.1004344
英文摘要In this paper, we review and analyze intrusion detection systems for Agriculture 4.0 cyber security. Specifically, we present cyber security threats and evaluation metrics used in the performance evaluation of an intrusion detection system for Agriculture 4.0. Then, we evaluate intrusion detection systems according to emerging technologies, including, Cloud computing, Fog/Edge computing, Network virtualization, Autonomous tractors, Drones, Internet of Things, Industrial agriculture, and Smart Grids. Based on the machine learning technique used, we provide a comprehensive classification of intrusion detection systems in each emerging technology. Furthermore, we present public datasets, and the implementation frameworks applied in the performance evaluation of intrusion detection systems for Agriculture 4.0. Finally, we outline challenges and future research directions in cyber security intrusion detection for Agriculture 4.0.
源URL[http://ir.ia.ac.cn/handle/173211/47205]  
专题自动化研究所_学术期刊_IEEE/CAA Journal of Automatica Sinica
推荐引用方式
GB/T 7714
Mohamed Amine Ferrag,Lei Shu,Othmane Friha,et al. Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(3):407-436.
APA Mohamed Amine Ferrag,Lei Shu,Othmane Friha,&Xing Yang.(2022).Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions.IEEE/CAA Journal of Automatica Sinica,9(3),407-436.
MLA Mohamed Amine Ferrag,et al."Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions".IEEE/CAA Journal of Automatica Sinica 9.3(2022):407-436.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。