中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Capturing Relevant Context for Visual Tracking

文献类型:期刊论文

作者Zhang, Yuping2; Ma, Bo2; Wu, Jiahao2; Huang, Lianghua1,3; Shen, Jianbing4
刊名IEEE TRANSACTIONS ON MULTIMEDIA
出版日期2021
卷号23页码:4232-4244
关键词Local neighborhood graph long-range dependencies long-term tracking visual object tracking
ISSN号1520-9210
DOI10.1109/TMM.2020.3038310
通讯作者Ma, Bo(bma000@bit.edu.cn)
英文摘要Studies have shown that contextual information can promote the robustness of trackers. However, trackers based on convolutional neural networks (CNNs) only capture local features, which limits their performance. We propose a novel relevant context block (RCB), which employs graph convolutional networks to capture the relevant context. In particular, it selects the k largest contributors as nodes for each query position (unit) that contain meaningful and discriminative contextual information and updates the nodes by aggregating the differences between the query position and its contributors. This operation can be easily incorporated into the existing networks and can be easily end-to-end trained using a standard backpropagation algorithm. To verify the effectiveness of RCB, we apply it to two trackers, SiamFC and GlobalTrack, respectively, and the two improved trackers are referred to as Siam-RCB andGlobalTrack-RCB. Extensive experiments onOTB, VOT, UAV123, LaSOT, TrackingNet, OxUvA, and VOT2018LT show the superiority of our method. For example, our Siam-RCB outperforms SiamFC by a very large margin (up to 11.2% in the success score and 7.8% in the precision score) on the OTB-100 benchmark.
WOS关键词OBJECT TRACKING
资助项目National Key Research and Development Program of China[2020YFC0832502] ; National Natural Science Foundation of China[62072042] ; National Natural Science Foundation of China[61961015]
WOS研究方向Computer Science ; Telecommunications
语种英语
WOS记录号WOS:000720519900025
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/46473]  
专题智能系统与工程
通讯作者Ma, Bo
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
3.Chinese Acad Sci, Ctr Res Intelligent Syst & Engn, Inst Automat, Beijing 100190, Peoples R China
4.Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
推荐引用方式
GB/T 7714
Zhang, Yuping,Ma, Bo,Wu, Jiahao,et al. Capturing Relevant Context for Visual Tracking[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:4232-4244.
APA Zhang, Yuping,Ma, Bo,Wu, Jiahao,Huang, Lianghua,&Shen, Jianbing.(2021).Capturing Relevant Context for Visual Tracking.IEEE TRANSACTIONS ON MULTIMEDIA,23,4232-4244.
MLA Zhang, Yuping,et al."Capturing Relevant Context for Visual Tracking".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):4232-4244.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。