中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Multi-Agent Reinforcement Learning Method With Route Recorders for Vehicle Routing in Supply Chain Management

文献类型:期刊论文

作者Ren, Lei6,7; Fan, Xiaoyang6,7; Cui, Jin4,5; Shen, Zhen3; Lv, Yisheng3; Xiong, Gang1,2
刊名IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
出版日期2022-02-15
页码11
关键词Reinforcement learning Costs Task analysis Transportation Optimization Computational modeling Vehicle routing Vehicle routing supply chain management multi-agent reinforcement learning (MARL) route recorder
ISSN号1524-9050
DOI10.1109/TITS.2022.3150151
通讯作者Cui, Jin(jincui@buaa.edu.cn)
英文摘要In the modern supply chain system, large-scale transportation tasks require the collaborative work of multiple vehicles to be completed on time. Over the past few decades, multi-vehicle route planning was mainly implemented by heuristic algorithms. However, these algorithms face the dilemma of long computation time. In recent years, some machine learning-based methods are also proposed for vehicle route planning, but the existing algorithms can hardly solve multi-vehicle time-sensitive problems. To overcome this problem, we propose a novel multi-agent reinforcement learning model, which optimizes the route length and the vehicle's arrival time simultaneously. The model is based on the encoder-decoder framework. The encoder mines the relationship between the customer nodes in the problem, and the decoder generates the route of each vehicle iteratively. Specially, we design multiple route recorders to extract the route history information of vehicles and realize the communication between them. In the inferring phase, the model could immediately generate routes for all vehicles in a new instance. To further improve the performance of the model, we devise a multi-sampling strategy and obtain the balance boundary between computation time and performance improvement. In addition, we propose a simulation-based vehicle configuration method to select the optimal number of vehicles in real applications. For validation, we conduct a series of experiments on problems with different customer amounts and various vehicle numbers. The results show that the proposed model outperforms other typical algorithms in both performance and calculation time.
WOS关键词OPTIMIZATION ; ALGORITHM ; NUMBER
资助项目National Key Research and Development Program of China[2019YFB1705502]
WOS研究方向Engineering ; Transportation
语种英语
WOS记录号WOS:000758740900001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China
源URL[http://ir.ia.ac.cn/handle/173211/47906]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Cui, Jin
作者单位1.Chinese Acad Sci, Cloud Comp Ctr, Dongguan 523808, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing Engn Res Ctr Intelligent Syst & Technol, Beijing 100190, Peoples R China
3.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
4.Beihang Univ, Ningbo Inst Technol, Ningbo 315800, Peoples R China
5.Beihang Univ, Res Inst Frontier Sci, Beijing 100191, Peoples R China
6.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
7.Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Ren, Lei,Fan, Xiaoyang,Cui, Jin,et al. A Multi-Agent Reinforcement Learning Method With Route Recorders for Vehicle Routing in Supply Chain Management[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2022:11.
APA Ren, Lei,Fan, Xiaoyang,Cui, Jin,Shen, Zhen,Lv, Yisheng,&Xiong, Gang.(2022).A Multi-Agent Reinforcement Learning Method With Route Recorders for Vehicle Routing in Supply Chain Management.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,11.
MLA Ren, Lei,et al."A Multi-Agent Reinforcement Learning Method With Route Recorders for Vehicle Routing in Supply Chain Management".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2022):11.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。