中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Quality in MR reporting (include improvements in acquisition using AI)

文献类型:期刊论文

作者Wang, Liang7; Margolis, Daniel J.6; Chen, Min5; Zhao, Xinming4; Li, Qiubai3; Yang, Zhenghan7; Tian, Jie1,2; Wang, Zhenchang7
刊名BRITISH JOURNAL OF RADIOLOGY
出版日期2022
卷号95期号:1131页码:7
ISSN号0007-1285
DOI10.1259/bjr.20210816
通讯作者Wang, Liang(1311935272@qq.com)
英文摘要The high quality of MRI reporting of the prostate is the most critical component of the service provided by a radiologist. Prostate MRI structured reporting with PI-RADS v. 2.1 has been proven to improve consistency, quality, guideline-based care in the management of prostate cancer. There is room for improved accuracy of prostate mpMRI reporting, particularly as PI-RADS core criteria are subjective for radiologists. The application of artificial intelligence may support radiologists in interpreting MRI scans. This review addresses the quality of prostate multiparametric MRI (mpMRI) structured reporting (include improvements in acquisition using artificial intelligence) in terms of size of prostate gland, imaging quality, lesion location, lesion size, TNM staging, sector map, and discusses the future prospects of quality in MR reporting.
WOS关键词PROSTATE-CANCER ; CLINICALLY SIGNIFICANT ; PREDICTION ; CLASSIFICATION ; SYSTEM
资助项目National Natural Science Foundation of China[82071887,81671656]
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
语种英语
WOS记录号WOS:000768233900002
出版者BRITISH INST RADIOLOGY
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/48090]  
专题自动化研究所_中国科学院分子影像重点实验室
通讯作者Wang, Liang
作者单位1.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
2.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med, Beijing, Peoples R China
3.Univ Iowa, Dept Radiol, Roy Carver Coll Med, Iowa City, IA 52242 USA
4.Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Dept Diagnost Radiol, Natl Clin Res Ctr Canc,Canc Hosp, Beijing, Peoples R China
5.Chinese Acad Med Sci, Beijing Hosp, Natl Ctr Gerontol, Inst Geriatr Med,Dept Radiol, Beijing, Peoples R China
6.Weill Cornell Med New York Presbyterian, Dept Radiol, New York, NY USA
7.Capital Med Univ, Dept Radiol, Affiliated Beijing Friendship Hosp, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Liang,Margolis, Daniel J.,Chen, Min,et al. Quality in MR reporting (include improvements in acquisition using AI)[J]. BRITISH JOURNAL OF RADIOLOGY,2022,95(1131):7.
APA Wang, Liang.,Margolis, Daniel J..,Chen, Min.,Zhao, Xinming.,Li, Qiubai.,...&Wang, Zhenchang.(2022).Quality in MR reporting (include improvements in acquisition using AI).BRITISH JOURNAL OF RADIOLOGY,95(1131),7.
MLA Wang, Liang,et al."Quality in MR reporting (include improvements in acquisition using AI)".BRITISH JOURNAL OF RADIOLOGY 95.1131(2022):7.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。