Enhancing Lexical Translation Consistency for Document-Level Neural Machine Translation
文献类型:期刊论文
作者 | Kang, Xiaomian1,3![]() ![]() ![]() ![]() |
刊名 | ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING
![]() |
出版日期 | 2022-05-01 |
卷号 | 21期号:3页码:21 |
关键词 | Document-level translation neural machine translation lexical consistency discourse phenomena |
ISSN号 | 2375-4699 |
DOI | 10.1145/3485469 |
通讯作者 | Kang, Xiaomian(xiaomian.kang@nlpr.ia.ac.cn) |
英文摘要 | Document-level neural machine translation (DocNMT) has yielded attractive improvements. In this article, we systematically analyze the discourse phenomena in Chinese-to-English translation, and focus on the most obvious ones, namely lexical translation consistency. To alleviate the lexical inconsistency, we propose an effective approach that is aware of the words which need to be translated consistently and constrains themodel to produce more consistent translations. Specifically, we first introduce a global context extractor to extract the document context and consistency context, respectively. Then, the two types of global context are integrated into a encoder enhancer and a decoder enhancer to improve the lexical translation consistency. We create a test set to evaluate the lexical consistency automatically. Experiments demonstrate that our approach can significantly alleviate the lexical translation inconsistency. In addition, our approach can also substantially improve the translation quality compared to sentence-level Transformer. |
资助项目 | Natural Science Foundation of China[62006224] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000778450600017 |
出版者 | ASSOC COMPUTING MACHINERY |
资助机构 | Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/48261] ![]() |
专题 | 模式识别国家重点实验室_自然语言处理 |
通讯作者 | Kang, Xiaomian |
作者单位 | 1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Intelligence Bldg,95 Zhongguancun East Rd, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Natl Lab Pattern Recognit, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Intelligence Bldg,95 Zhongguancun East Rd, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Kang, Xiaomian,Zhao, Yang,Zhang, Jiajun,et al. Enhancing Lexical Translation Consistency for Document-Level Neural Machine Translation[J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING,2022,21(3):21. |
APA | Kang, Xiaomian,Zhao, Yang,Zhang, Jiajun,&Zong, Chengqing.(2022).Enhancing Lexical Translation Consistency for Document-Level Neural Machine Translation.ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING,21(3),21. |
MLA | Kang, Xiaomian,et al."Enhancing Lexical Translation Consistency for Document-Level Neural Machine Translation".ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING 21.3(2022):21. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。