中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
EBERT: Efficient BERT Inference with Dynamic Structured Pruning

文献类型:会议论文

作者Liu, Zejian1,2; Li, Fanrong1,2; Li, Gang1; Cheng, Jian1,2
出版日期2021
会议日期2021
会议地点Online
英文摘要

Pruning has been demonstrated as an effective way of reducing computational complexity for deep networks, especially CNNs for computer vision tasks. In this paper, we investigate the opportunity to accelerate the inference of large-scale pre-trained language model via pruning. We propose EBERT, a dynamic structured pruning algorithm for efficient BERT inference. Unlike previous methods that randomly prune the model weights for static inference, EBERT dynamically determines and prunes the unimportant heads in multi-head self-attention layers and the unimportant structured computations in feed-forward network for each input sample at run-time. Experimental results show that our proposed EBERT outperforms other state-of-the-art methods on different tasks.

语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/48622]  
专题类脑芯片与系统研究
通讯作者Cheng, Jian
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, CAS
2.School of Future Technology, University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Liu, Zejian,Li, Fanrong,Li, Gang,et al. EBERT: Efficient BERT Inference with Dynamic Structured Pruning[C]. 见:. Online. 2021.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。