中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbI3 Perovskite Quantum Dots

文献类型:期刊论文

作者Y. Qian; Y. Shi; G. Shi; G. Shi; X. Zhang; L. Yuan; Q. Zhong; Y. Liu; Y. Wang; X. Ling
刊名Solar RRL
出版日期2021
卷号5期号:5
ISSN号2367198X
DOI10.1002/solr.202100090
英文摘要Lead-halide perovskite quantum dots (QDs) have attracted substantial attention due to their great potential in solution-processed optoelectronic applications. The current synthetic method mostly relies on the binary-precursor strategy, which significantly restricts the reaction yield and elemental regulation, leading to extremely high material cost. Herein, a more versatile ternary-precursor method to investigate the effect of the precursor ratios on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 QDs is explored. It is revealed that a decreased Pb/Cs feeding ratio can largely increase the reaction yield, whereas a reduced Pb/I ratio can improve the surface termination and optical properties of the resultaning CsPbI3 QDs. After rational tuning of the synthetic protocol, the reaction yield can be improved more than 7.5 times and the material cost can be reduced from 303 $ g1 to as low as 42 $ g1 compared to the conventional binary-precursor method. In addition, the photovoltaic device using these QDs exhibits an efficiency close to the reported state-of-the-art ones. It is believed that this scalable and low-cost preparation of CsPbI3 QDs provides new insight into the future commercialization of perovskite QDs-based optoelectronics. 2021 Wiley-VCH GmbH
URL标识查看原文
源URL[http://ir.ciomp.ac.cn/handle/181722/65321]  
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Y. Qian,Y. Shi,G. Shi,et al. The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbI3 Perovskite Quantum Dots[J]. Solar RRL,2021,5(5).
APA Y. Qian.,Y. Shi.,G. Shi.,G. Shi.,X. Zhang.,...&Z. Liu and W. Ma.(2021).The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbI3 Perovskite Quantum Dots.Solar RRL,5(5).
MLA Y. Qian,et al."The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbI3 Perovskite Quantum Dots".Solar RRL 5.5(2021).

入库方式: OAI收割

来源:长春光学精密机械与物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。