Learning policy scheduling for text augmentation
文献类型:期刊论文
作者 | Li, Shuokai; Ao, Xiang3; Pan, Feiyang; He, Qing |
刊名 | NEURAL NETWORKS
![]() |
出版日期 | 2022 |
卷号 | 145页码:121-127 |
关键词 | Data augmentation Text classification |
ISSN号 | 0893-6080 |
DOI | 10.1016/j.neunet.2021.09.028 |
英文摘要 | When training deep learning models, data augmentation is an important technique to improve the performance and alleviate overfitting. In natural language processing (NLP), existing augmentation methods often use fixed strategies. However, it might be preferred to use different augmentation policies in different stage of training, and different datasets may require different augmentation policies. In this paper, we take dynamic policy scheduling into consideration. We design a search space over augmentation policies by integrating several common augmentation operations. Then, we adopt a population based training method to search the best augmentation schedule. We conduct extensive experiments on five text classification and two machine translation tasks. The results show that the optimized dynamic augmentation schedules achieve significant improvements against previous methods. (C) 2021 Elsevier Ltd. All rights reserved. |
资助项目 | National Key Research and De-velopment Program of China[2017YFB1002104] ; National Natural Science Foundation of China[92046003] ; National Natural Science Foundation of China[61976204] ; National Natural Science Foundation of China[U1811461] ; Project of Youth Innovation Promotion Association CAS ; Beijing Nova Program[Z201100006820062] ; Ant Financial through the Ant Financial Science Funds for Security Research |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000717665500006 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://119.78.100.204/handle/2XEOYT63/18111] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ao, Xiang |
作者单位 | 1.Inst Intelligent Comp Technol, Suzhou, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Chinese Acad Sci, CAS, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Shuokai,Ao, Xiang,Pan, Feiyang,et al. Learning policy scheduling for text augmentation[J]. NEURAL NETWORKS,2022,145:121-127. |
APA | Li, Shuokai,Ao, Xiang,Pan, Feiyang,&He, Qing.(2022).Learning policy scheduling for text augmentation.NEURAL NETWORKS,145,121-127. |
MLA | Li, Shuokai,et al."Learning policy scheduling for text augmentation".NEURAL NETWORKS 145(2022):121-127. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。