Neural Collaborative Preference Learning With Pairwise Comparisons
文献类型:期刊论文
作者 | Li, Zhaopeng7,8,9; Xu, Qianqian6; Jiang, Yangbangyan7,8; Ma, Ke4,5; Cao, Xiaochun3,4,7; Huang, Qingming1,2,5,6 |
刊名 | IEEE TRANSACTIONS ON MULTIMEDIA
![]() |
出版日期 | 2021 |
卷号 | 23页码:1977-1989 |
关键词 | Recommender system collaborative ranking neural networks preference ranking |
ISSN号 | 1520-9210 |
DOI | 10.1109/TMM.2020.3006373 |
英文摘要 | Collaborative Ranking (CR), as an effective recommendation framework, has attracted increasing attention in recent years. Most CR methods simply adopt the inner product between user/item embeddings as the rating score function, with an assumption that the interacted items are preferred to non-interacted ones. However, such fixed score functions and assumptions might not be sufficient to capture the real preference ranking list from the complicated interactions in real-world data. To alleviate this issue, we develop a novel collaborative ranking framework that learns an arbitrary utility function for item ranking with user preference concerned. In the core of our framework, a neural network is employed to model the utility function for personalized ranking with the strength of its nonlinearity. On top of this, we further adopt a pairwise ranking loss for user-item pairs to preserve the preference order of items for users. Besides, such a utility function enables us to generate the final top-K preference list in a much easier way. Finally, extensive experiments on four real-world datasets show the validity of our proposed method. |
资助项目 | National Key R&D Program of China[2018AAA0102003] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61931008] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61971016] ; National Natural Science Foundation of China[U1936208] ; National Natural Science Foundation of China[61672514] ; National Natural Science Foundation of China[61976202] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; Beijing Education Committee Cooperation Beijing Natural Science Foundation[KZ201910005007] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB28000000] ; Beijing Natural Science Foundation[4182079] ; Youth Innovation Promotion Association CAS |
WOS研究方向 | Computer Science ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000724477100005 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.204/handle/2XEOYT63/18151] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Huang, Qingming |
作者单位 | 1.Peng Cheng Lab, Shenzhen 518055, Peoples R China 2.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management BDKM, Beijing 101408, Peoples R China 3.Chinese Acad Sci, Inst Informat Engn, Key Lab Informat Secur, Beijing 100093, Peoples R China 4.Peng Cheng Lab, Artificial Intelligence Res Ctr, Shenzhen 518055, Peoples R China 5.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China 6.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 7.Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China 8.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur SKLOIS, Beijing 100093, Peoples R China 9.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, SKLOIS, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Zhaopeng,Xu, Qianqian,Jiang, Yangbangyan,et al. Neural Collaborative Preference Learning With Pairwise Comparisons[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:1977-1989. |
APA | Li, Zhaopeng,Xu, Qianqian,Jiang, Yangbangyan,Ma, Ke,Cao, Xiaochun,&Huang, Qingming.(2021).Neural Collaborative Preference Learning With Pairwise Comparisons.IEEE TRANSACTIONS ON MULTIMEDIA,23,1977-1989. |
MLA | Li, Zhaopeng,et al."Neural Collaborative Preference Learning With Pairwise Comparisons".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):1977-1989. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。