High-Performance Discriminative Tracking with Transformers
文献类型:会议论文
作者 | Bin, Yu![]() ![]() ![]() ![]() ![]() |
出版日期 | 2021-10-11 |
会议日期 | 2021-10-11--2021-10-17 |
会议地点 | online |
DOI | 10.1109/ICCV48922.2021.00971 |
英文摘要 | End-to-end discriminative trackers improve the state of the art significantly, yet the improvement in robustness and efficiency is restricted by the conventional discriminative model, i.e., least-squares based regression. In this paper, we present DTT, a novel single-object discriminative tracker, based on an encoder-decoder Transformer architecture. By self- and encoder-decoder attention mechanisms, our approach is able to exploit the rich scene information in an |
会议录出版者 | IEEE |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/48791] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_图像与视频分析团队 |
作者单位 | School of Artificial Intelligence, UCAS, China |
推荐引用方式 GB/T 7714 | Bin, Yu,Ming, Tang,Linyu, Zheng,et al. High-Performance Discriminative Tracking with Transformers[C]. 见:. online. 2021-10-11--2021-10-17. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。