中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Variational Attention for Commonsense Knowledge Aware Conversation Generation

文献类型:会议论文

作者Bai GR(白桂荣)1,2; He SZ(何世柱)1,2; Liu K(刘康)1,2; Zhao J(赵军)1,2
出版日期2019
会议日期2019
会议地点Dunhuang
DOI10.1007/978-3-030- 32233-5_1
页码3-15
英文摘要

Conversation generation is an important task in natural language processing, and commonsense knowledge is vital to provide a shared background for better replying. In this paper, we present a novel commonsense knowledge aware conversation generation model, which adopts variational attention for incorporating commonsense knowledge to generate more appropriate conversation. Given a post, the model retrieves relevant knowledge graphs from a knowledge base, and then attentively incorporates knowledge to its response. For enhancing attention to incorporate more clean and suitable knowledge into response generation, we adopt variational attention rather than standard neural attention on knowledge graphs, which is unlike previous knowledge aware generation models. Experimental results show that the variational attention based model can incorporate more clean and suitable knowledge into response generation.

会议录出版者Technical Committee of Chinese Information, China Computer Federation
会议录出版地Dunhuang
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/48870]  
专题模式识别国家重点实验室_自然语言处理
作者单位1.中国科学院大学人工智能学院
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Bai GR,He SZ,Liu K,et al. Variational Attention for Commonsense Knowledge Aware Conversation Generation[C]. 见:. Dunhuang. 2019.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。