中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spatio-Temporal Causal Transformer for Multi-Grained Surgical Phase Recognition

文献类型:会议论文

作者Hua-Bin Chen2,3; Zhen Li3; Pan Fu1,3; Zhen-Liang Ni2,3; Gui-Bin Bian3
出版日期2022
会议日期2022.07.11-15
会议地点Glasgow,Scotland,UK
英文摘要

Automatic surgical phase recognition plays a key role in surgical workflow analysis and overall optimization in clinical work. In the complicated surgical procedures, similar inter-class appearance and drastic variability in phase duration make this still a challenging task. In this paper, a spatio-temporal transformer is proposed for online surgical phase recognition with different granularity. To extract rich spatial information, a spatial transformer is used to model global spatial dependencies of each time index. To overcome the variability in phase duration, a temporal transformer captures the multi-scale temporal context of different time indexes with a dual pyramid pattern. Our method is thoroughly validated on the public Cholec80 dataset with 7 coarse-grained phases and the CATARACTS2020 dataset with 19 fine-grained phases, outperforming state-of-the-art approaches with 91.4% and 84.2% accuracy, taking only 24.5M parameters.

源URL[http://ir.ia.ac.cn/handle/173211/48687]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Gui-Bin Bian
作者单位1.School of Automation, Beijing Information Science and Technology University
2.School of Artificial Intelligence, University of Chinese Academy of Sciences
3.State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Hua-Bin Chen,Zhen Li,Pan Fu,et al. Spatio-Temporal Causal Transformer for Multi-Grained Surgical Phase Recognition[C]. 见:. Glasgow,Scotland,UK. 2022.07.11-15.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。