中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation

文献类型:会议论文

作者Fan, Siqi3,4; Dong, Qiulei1,2,3; Zhu, Fenghua4; Lv, Yisheng4; Ye, Peijun4; Wang, Feiyue4
出版日期2021-06
会议日期2021-6-19
会议地点Online
DOI10.1109/CVPR46437.2021.01427
页码14499-14508
英文摘要

How to learn effective features from large-scale point clouds for semantic segmentation has attracted increasing attention in recent years. Addressing this problem, we propose a learnable module that learns Spatial Contextual Features from large-scale point clouds, called SCF in this paper. The proposed module mainly consists of three blocks, including the local polar representation block, the dualdistance attentive pooling block, and the global contextual feature block. For each 3D point, the local polar representation block is firstly explored to construct a spatial representation that is invariant to the z-axis rotation, then the dual-distance attentive pooling block is designed to utilize the representations of its neighbors for learning more discriminative local features according to both the geometric and feature distances among them, and finally, the global contextual feature block is designed to learn a global context for each 3D point by utilizing its spatial location and the volume ratio of the neighborhood to the global point cloud. The proposed module could be easily embedded into various network architectures for point cloud segmentation, naturally resulting in a new 3D semantic segmentation network with an encoder-decoder architecture, called SCF-Net in this work. Extensive experimental results on two public datasets demonstrate that the proposed SCF-Net performs better than several state-of-the-art methods in most cases.

源文献作者IEEE ; IEEE Comp Soc ; CVF
会议录Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
语种英语
URL标识查看原文
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS记录号WOS:000742075004070
源URL[http://ir.ia.ac.cn/handle/173211/48725]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Dong, Qiulei; Lv, Yisheng
作者单位1.Center for Excellence in Brain Science and Intelligence Technology, CAS
2.National Laboratory of Pattern Recognition, CASIA
3.School of Artificial Intelligence, University of Chinese Academy of Sciences
4.State Key Laboratory for Management and Control of Complex Systems, CASIA
推荐引用方式
GB/T 7714
Fan, Siqi,Dong, Qiulei,Zhu, Fenghua,et al. SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation[C]. 见:. Online. 2021-6-19.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。