交通场景下行人多目标跟踪算法研究
文献类型:学位论文
作者 | 刘雅婷![]() |
答辩日期 | 2022-05-19 |
文献子类 | 博士 |
授予单位 | 中科院自动化所 |
授予地点 | 中科院自动化所 |
导师 | 王飞跃 |
关键词 | 交通视觉 行人跟踪 注意力机制 深度学习 |
学位专业 | 控制理论与控制工程 |
英文摘要 | 交通场景的行人跟踪作为计算机视觉领域的重要分支,不仅能够获得视野中的轨迹信息,也为交通行为分析和场景理解提供重要依据,对无人驾驶、路 口人流量检测、行人轨迹预测、危险情况分析等都起到了至关重要的作用。目前,在复杂交通场景中,实现行人的多目标跟踪是具有极大挑战性的任务。这是由于行人轨迹之间相互交错,频繁出现遮挡和交叠的现象,同时由于拍摄角度问题,不同目标在视频中大小迥异。除此之外,交通场景中的行人检测也难免存在大量噪声。现阶段大多数跟踪算法在目标有遮挡和轨迹交叠的情况下对特征提取和特征关联仍不够鲁棒和准确,而在错误检测的干扰下,目标的跟踪轨迹无法实现长时与稳定。 本文将行人多目标跟踪方法划分为基于检测的跟踪方法和联合检测的跟踪 方法。前者可拆分为目标检测、特征提取、特征关联和轨迹生成四步,其中检测和特征提取为两个独立过程,能够分模块设计和验证跟踪算法。后者同时进行特征提取和检测结果输出,能够联合两个过程共同提升跟踪效果。基于以上难点和研究方法,本文针对交通视频中行人跟踪的特征提取和关联展开研究, 利用基于检测的跟踪方法分模块研究特征提取、预测和关联方法,并利用联合检测的多目标跟踪方法研究如何提取更准确的跟踪特征。 本文的主要研究内容和贡献归纳如下: 1. 针对当前交通场景中由于检测存在极大干扰以及行人之间频繁遮挡造成跟踪失败的现象,本文提出了基于双向长短时记忆网络(Bi-directional LSTM,本文简称双向 LSTM) 的外观运动特征提取与两阶段关联的方法。该方法的核心思想是在获得行人深度外观特征的基础上,通过双向LSTM对目标在当前帧的外观进行预测作为短时外观特征,同时选取目标历史轨迹中可靠的检测作为长时稳定外观特征共同构建目标的外观表征,以获得轨迹更鲁棒的外观表示。另外, 本文设计了基于双向LSTM预测和卡尔曼滤波(Kalman Filter, KF) 的运动特征提取模型,在获得轨迹预测位置的同时提升了轨迹的平滑性。最后,本文综合以 上两种特征构建基于稳定轨迹的两阶段关联方法,首先对置信度高的轨迹进行关联,再将未关联的轨迹与检测进行第二阶段关联,以获取更加稳定的跟踪结果。实验结果表明,本文提出的方法能够提升多目标跟踪的准确性。 2.针对当前跟踪场景中行人距离较近或出现遮挡导致的错误检测增多从而造成跟踪特征提取失败的问题,本文设计了基于注意机制的外观特征提取以及基于群组匹配的能量函数最小化方法。首先,建立基于行人姿态的硬注意力模块和基于区域的软注意力模块,加入到行人的局部信息和全局信息获取中,提高模型对于重点位置的关注度,帮助模型获取目标被部分遮挡时的外观特征。 然后,本文基于该外观特征和线性运动特征构建相似性矩阵获取初始关联结果。 更进一步,本文考虑目标之间的运动相关关系,对目标划分群组并基于组内可靠轨迹建立连续帧的群组匹配关系,在每一组内基于相对方位一致性和运动趋势一致性分别构建目标轨迹间的一元、二元能量项,通过最小化网络流能量函 数修正初始关联结果,从而生成更稳定长时的跟踪轨迹。实验结果表明,该方 法可以提高跟踪精度并减少碎片化轨迹。 3. 针对基于检测的多目标跟踪方法受到检测精度的限制,本文将Transformer引入多目标跟踪任务,以联合检测的跟踪方式同时提升检测和跟踪的精度。通过引入语义分割任务帮助Transformer学习到细粒度的图像信息,提升Transformer注意力权重对前景目标的注意力,从而帮助获取更准确的感兴趣目标位置以及目标间的关联特征。此外,本文还提出了基于图像特征的动态查询生成方法,针对不同数据分布生成基于图像特征的动态查询,帮助Transformer解码器更加准确地估计潜在目标位置,提升模型对于新出现目标的捕获能力。 实验表明,该算法提升了跟踪的准确性和轨迹的稳定性。 |
语种 | 中文 |
页码 | 156 |
源URL | [http://ir.ia.ac.cn/handle/173211/48811] ![]() |
专题 | 毕业生_博士学位论文 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
推荐引用方式 GB/T 7714 | 刘雅婷. 交通场景下行人多目标跟踪算法研究[D]. 中科院自动化所. 中科院自动化所. 2022. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。