中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dynamic Guided Network for Monocular Depth Estimation

文献类型:会议论文

作者Xing, Xiaoxia1,2; Cai, Yinghao2; Wang, Yanqing2; Lu, Tao2; Yang, Yiping2; Wen, Dayong2
出版日期2021-05
会议日期Jan. 10-15, 2021
会议地点Milan, Italy
关键词Depth estimation Dynamic guide filter Self-attention mechanism
DOI10.1109/ICPR48806.2021.9413264
英文摘要
Self-attention and encoder-decoder have been widely used in the deep neural network for monocular depth estimation. The self-attention mechanism is capable of capturing long-range dependencies by computing the representation of each image position by a weighted sum of the features at all positions, while the encoder-decoder can capture detailed structural information by gradually recovering spatial information. In this work, we combine the advantages of both methods. Specifically, our proposed model, DGNet, extends EMANet by adding an effective decoder module to progressively refine the coarse depth map. In the decoder stage, we design a dynamic guided upsampling module that employs dynamically generated kernel conditioned on low-level features to guide the upsampling of the coarse depth map. Experimental results demonstrate that our method obtains higher accuracy and generates visually pleasant depth maps.
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/48782]  
专题综合信息系统研究中心_视知觉融合及其应用
通讯作者Cai, Yinghao
作者单位1.University of Chinese Academy of Sciences, Beijing, China
2.Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Xing, Xiaoxia,Cai, Yinghao,Wang, Yanqing,et al. Dynamic Guided Network for Monocular Depth Estimation[C]. 见:. Milan, Italy. Jan. 10-15, 2021.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。