Trans-ResNet: Integrating Transformers and CNNs for Alzheimer's disease classification
文献类型:会议论文
作者 | Li C(李超)2,3![]() ![]() ![]() ![]() ![]() |
出版日期 | 2022-03 |
会议日期 | 2022-3-28 |
会议地点 | 印度,加尔各答 |
关键词 | convolutional neural network deep learning structural MRI transfer learning Transformer |
DOI | 10.1109/ISBI52829.2022.9761549 |
英文摘要 | Convolutional neural networks (CNNs) have demonstrated excellent performance for brain disease classification from MRI data. However, CNNs lack the ability to capture global dependencies. The recently proposed architecture called Transformer uses attention mechanisms to match or even outperform CNNs on various vision tasks. Transformer’s performance is dependent on access to large training datasets, but sample sizes for most brain MRI datasets are relatively small. To overcome this limitation, we propose Trans-ResNet, a novel architecture which integrates the advantages of both CNNs and Transformers. In addition, we pre-trained our Trans-ResNet on a large-scale dataset on the task of brain age estimation for higher performance. Using three neuroimaging cohorts (UK Biobank, AIBL, ADNI), we demonstrated that our Trans-ResNet achieved higher classification accuracy on Alzheimer disease prediction compared to other state-of-the-art CNN-based methods. |
会议录出版者 | Institute of Electrical and Electronics Engineers |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/48876] ![]() |
专题 | 自动化研究所_脑网络组研究中心 |
通讯作者 | Jiang TZ(蒋田仔) |
作者单位 | 1.CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Australia 2.中国科学院大学 3.中国科学院自动化研究所脑网络组 |
推荐引用方式 GB/T 7714 | Li C,Cui Y,Luo N,et al. Trans-ResNet: Integrating Transformers and CNNs for Alzheimer's disease classification[C]. 见:. 印度,加尔各答. 2022-3-28. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。