中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Trans-ResNet: Integrating Transformers and CNNs for Alzheimer's disease classification

文献类型:会议论文

作者Li C(李超)2,3; Cui Y(崔玥)2,3; Luo N(罗娜)2,3; Liu Y(刘勇)2,3; Bourgeat Pierrick1; Fripp Jurgen1; Jiang TZ(蒋田仔)2,3
出版日期2022-03
会议日期2022-3-28
会议地点印度,加尔各答
关键词convolutional neural network deep learning structural MRI transfer learning Transformer
DOI10.1109/ISBI52829.2022.9761549
英文摘要

Convolutional neural networks (CNNs) have demonstrated excellent performance for brain disease classification from MRI data. However, CNNs lack the ability to capture global dependencies. The recently proposed architecture called Transformer uses attention mechanisms to match or even outperform CNNs on various vision tasks. Transformer’s performance is dependent on access to large training datasets, but sample sizes for most brain MRI datasets are relatively small. To overcome this limitation, we propose Trans-ResNet, a novel architecture which integrates the advantages of both CNNs and Transformers. In addition, we pre-trained our Trans-ResNet on a large-scale dataset on the task of brain age estimation for higher performance. Using three neuroimaging cohorts (UK Biobank, AIBL, ADNI), we demonstrated that our Trans-ResNet achieved higher classification accuracy on Alzheimer disease prediction compared to other state-of-the-art CNN-based methods.

会议录出版者Institute of Electrical and Electronics Engineers
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/48876]  
专题自动化研究所_脑网络组研究中心
通讯作者Jiang TZ(蒋田仔)
作者单位1.CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Australia
2.中国科学院大学
3.中国科学院自动化研究所脑网络组
推荐引用方式
GB/T 7714
Li C,Cui Y,Luo N,et al. Trans-ResNet: Integrating Transformers and CNNs for Alzheimer's disease classification[C]. 见:. 印度,加尔各答. 2022-3-28.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。