平行艺术中的绘画图像生成方法研究
文献类型:学位论文
作者 | 易达![]() |
答辩日期 | 2022-05 |
文献子类 | 硕士 |
授予单位 | 中国科学院自动化研究所 |
授予地点 | 中国科学院自动化研究所 |
导师 | 王飞跃 |
关键词 | 绘画图像生成 艺术风格迁移 扩散模型 笔触风格化 |
学位名称 | 工学硕士 |
学位专业 | 社会计算 |
英文摘要 | 绘画作为一种重要的艺术表现形式,承担了审美认知、审美教育、审美娱乐等多种社会功能。近年来随着人工智能的不断发展,深度学习技术深刻地影响了艺术创作领域。绘画图像生成是一类通过参考真实绘画风格进行新绘画内容创作的技术,在社交、娱乐与辅助艺术创作等方面具有广泛的应用价值。现有的绘画图像生成方法普遍忽视了笔触在绘画中的重要影响,另外在生成高质量绘画样本的同时样本多样性较差。针对机器进行艺术创作时遇到的困难,有研究者提出平行艺术框架。平行艺术旨在构建艺术创作中机器与人的伙伴关系,针对艺术创作过程建立平行系统,为解决机器进行绘画生成所面临的上述问题提供了新思路。 本文以平行艺术为指导,对绘画图像生成任务中样本多样性、绘画重建与风格迁移三个方面展开研究,提出了基于扩散模型的绘画图像生成方法,基于笔触渲染的绘画重建方法与基于笔触特征统计的风格对齐模块,尝试解决生成样本多样性差,绘画重建笔触纹理不真实与风格迁移中笔触风格缺失三个问题。本文的主要工作如下: • 提出了一种基于扩散模型的绘画图像生成方法。以画家风格作为特有属性,实现了从噪声开始通过迭代去噪过程生成具有特定画家风格的绘画图像。对比实验结果表明,该方法提高了绘画生成样本的多样性。 • 提出了一种基于笔触渲染的绘画重建方法。建立笔触的参数化模型,通过可微渲染器构造参数化笔触到像素域的映射,以更新独立笔触参数的形式进行在线图像优化,实现了绘画图像的笔触重建。 • 提出了一种基于笔触特征统计的风格对齐模块。基于笔触特征的损失函数与像素级风格和内容损失进行联合优化,实现了风格化过程中笔触特征的精确分离和自由控制;同时基于笔触特征对齐, 以名画的笔触为参考,实现了绘画笔触风格迁移。
|
语种 | 中文 |
页码 | 82 |
源URL | [http://ir.ia.ac.cn/handle/173211/48814] ![]() |
专题 | 毕业生_硕士学位论文 |
推荐引用方式 GB/T 7714 | 易达. 平行艺术中的绘画图像生成方法研究[D]. 中国科学院自动化研究所. 中国科学院自动化研究所. 2022. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。