中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
HGCNet: Deep Anthropomorphic Hand Grasping in Clutter

文献类型:会议论文

作者Li YM(李一鸣)
出版日期2022-05
会议日期2022-5
会议地点线上+线下(美国费城)
英文摘要

Grasping in cluttered environments is one of the most fundamental skills in robotic manipulation. Most of the current works focus on estimating grasp poses for parallel-jaw or suction-cup end effectors. However, the study for dexterous anthropomorphic hand grasping in clutter remains a great challenge. In this paper, we propose HGC-Net, a single-shot network that learns to predict dense hand grasp configurations in clutter from single-view point cloud input. Our end-to-end neural network can predict hand grasp proposals efficiently and effectively. To enhance generalization, we built a largescale synthetic grasping dataset with 179 household objects, 5K cluttered scenes and over 10M hand annotations. Experiments in simulation show that our model can predict dense and robust hand grasps and clear over 78% of unseen objects in clutter without any post-processing and outperform baseline methods by a large margin. Experiments on the real robot platform also demonstrate that the model trained on synthetic data performs well in natural environments. Code is available at https://github.com/yimingli1998/hgc net.

会议录出版者IEEE
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/48751]  
专题智能机器人系统研究
作者单位1.中国科学院大学
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Li YM. HGCNet: Deep Anthropomorphic Hand Grasping in Clutter[C]. 见:. 线上+线下(美国费城). 2022-5.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。