中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Oscillatory Behavior of Third-order Nonlinear Differential Equations with a Sublinear Neutral Term

文献类型:期刊论文

作者Li, Wen-juan2; Yu, Yuan-hong1
刊名ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
出版日期2022-04-01
卷号38期号:2页码:484-496
关键词oscillatory behavior neutral differential equation third-order
ISSN号0168-9673
DOI10.1007/s10255-022-1089-1
英文摘要The authors present some new criteria for oscillation and asymptotic behavior of solutions of third-order nonlinear differential equations with a sublinear neutral term of the form (r(t)(z ''(t))(alpha))' + integral(d)(c) q(t, xi)f (x(sigma(t, xi))) d xi = 0, t >= t(0) where z(t) = x(t)+integral(b)(a) p(t, xi)x(gamma) (tau(t, xi)) d xi, 0 < gamma <= 1. Under the conditions integral(infinity)(t0) r(-1/alpha)(t)dt = infinity or integral(infinity)(t0) r(-1/alpha)(t)dt < infinity. The results obtained here extend, improve and complement to some known results in the literature. Examples are provided to illustrate the theorems.
资助项目NSFC[11761006] ; NSFC[11762001] ; Higher School Foundation of Inner Mongolia[NJZY17301]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000781349200017
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60316]  
专题中国科学院数学与系统科学研究院
通讯作者Li, Wen-juan
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Chifeng Univ, Math & Comp Sci Coll, Chifeng 024000, Peoples R China
推荐引用方式
GB/T 7714
Li, Wen-juan,Yu, Yuan-hong. Oscillatory Behavior of Third-order Nonlinear Differential Equations with a Sublinear Neutral Term[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2022,38(2):484-496.
APA Li, Wen-juan,&Yu, Yuan-hong.(2022).Oscillatory Behavior of Third-order Nonlinear Differential Equations with a Sublinear Neutral Term.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,38(2),484-496.
MLA Li, Wen-juan,et al."Oscillatory Behavior of Third-order Nonlinear Differential Equations with a Sublinear Neutral Term".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 38.2(2022):484-496.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。