中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Nonnegative Polynomials and Circuit Polynomials

文献类型:期刊论文

作者Wang, Jie
刊名SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY
出版日期2022
卷号6期号:2页码:111-133
关键词nonnegative polynomial sum of nonnegative circuit polynomials SONC certificate of nonnegativity sum of squares SAGE
ISSN号2470-6566
DOI10.1137/20M1313969
英文摘要The concept of sums of nonnegative circuit (SONC) polynomials was recently introduced as a new certificate of nonnegativity especially for sparse polynomials. In this paper, we explore the relationship between nonnegative polynomials and SONCs. As a first result, we provide sufficient conditions for nonnegative polynomials with general Newton polytopes to be a SONC, which generalizes the previous result on nonnegative polynomials with simplex Newton polytopes. Second, we prove that every SONC admits a SONC decomposition without cancellation. In other words, SONC decompositions preserve sparsity of nonnegative polynomials, which is dramatically different from the classical sum of squares decompositions and is a key property to design efficient algorithms for sparse polynomial optimization based on SONC decompositions.
资助项目NSFC[61732001] ; NSFC[61532019]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000788408200002
出版者SIAM PUBLICATIONS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60375]  
专题中国科学院数学与系统科学研究院
通讯作者Wang, Jie
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jie. Nonnegative Polynomials and Circuit Polynomials[J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY,2022,6(2):111-133.
APA Wang, Jie.(2022).Nonnegative Polynomials and Circuit Polynomials.SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY,6(2),111-133.
MLA Wang, Jie."Nonnegative Polynomials and Circuit Polynomials".SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY 6.2(2022):111-133.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。