中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Invited Commentary: Estimation and Bounds Under Data Fusion Comment

文献类型:期刊论文

作者Miao, Wang4; Li, Wei2,3; Hu, Wenjie4; Wang, Ruoyu1; Geng, Zhi4
刊名AMERICAN JOURNAL OF EPIDEMIOLOGY
出版日期2021-07-07
页码5
关键词bounds data fusion epidemiologic methods imputation
ISSN号0002-9262
DOI10.1093/aje/kwab194
英文摘要In their recent article, Ogburn et al. (Am J Epidemiol. 2021;190(6):1142-1147) raised a cautionary tale for epidemiologic data fusion: Bias may occur if a variable that is completely missing in the primary data set is imputed according to a regression model estimated from an auxiliary data set. However, in some specific settings, a solution may exist. Focusing on a linear outcome regression model with a missing covariate, we show that the bias can be eliminated if the underlying imputation model for the missing covariate is nonlinear in the common variables measured in both data sets. Otherwise, we describe 2 alternative approaches existing in the data fusion literature that could partially resolve this issue: One fits the outcome model by leveraging an additional validation data set containing joint observations of the outcome and the missing covariate, and the other offers informative bounds for the outcome regression coefficients without using validation data. We justify these 3 methods in a linear outcome model and briefly discuss their extension to general settings.
资助项目National Natural Science Foundation of China[12071015] ; Beijing Natural Science Foundation[Z190001]
WOS研究方向Public, Environmental & Occupational Health
语种英语
WOS记录号WOS:000791040600001
出版者OXFORD UNIV PRESS INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60408]  
专题中国科学院数学与系统科学研究院
通讯作者Miao, Wang
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing, Peoples R China
2.Renmin Univ China, Dept Biostat & Epidemiol, Beijing, Peoples R China
3.Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
4.Peking Univ, Sch Math Sci, Dept Probabil & Stat, 5 Summer Palace Rd, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Miao, Wang,Li, Wei,Hu, Wenjie,et al. Invited Commentary: Estimation and Bounds Under Data Fusion Comment[J]. AMERICAN JOURNAL OF EPIDEMIOLOGY,2021:5.
APA Miao, Wang,Li, Wei,Hu, Wenjie,Wang, Ruoyu,&Geng, Zhi.(2021).Invited Commentary: Estimation and Bounds Under Data Fusion Comment.AMERICAN JOURNAL OF EPIDEMIOLOGY,5.
MLA Miao, Wang,et al."Invited Commentary: Estimation and Bounds Under Data Fusion Comment".AMERICAN JOURNAL OF EPIDEMIOLOGY (2021):5.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。