中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning

文献类型:期刊论文

作者Ding, Wei-Lu2; Lu, Yumiao2; Peng, Xing-Liang3; Dong, Hao2; Chi, Wei-Jie4; Yuan, Xiaoqing2; Sun, Zhu-Zhu5; He, Hongyan1,2,6
刊名JOURNAL OF MATERIALS CHEMISTRY A
出版日期2021-11-23
卷号9期号:45页码:25547-25557
ISSN号2050-7488
DOI10.1039/d1ta08013j
英文摘要PEDOT has been widely used in advanced electronics, and one of the keys to determine the performance is hole mobility. PEDOT commonly shows amorphous morphology ascribed to the flexibility of its backbone, giving rise to a wide difference in mobility. To boost the mobility, one generally introduces an ionic liquid (IL) to modulate the morphology to be more ordered. To estimate the mobility, one needs to do molecular dynamics (MD) simulations to acquire the abundant conformers, then to investigate the transfer integral (V-ij) via quantum mechanics (QM) calculations theoretically or via quantum Hall effect measurements experimentally. Here, with the help of machine learning (ML) technology (involving supervised learning algorithms of linear regression (LR), artificial neural network (ANN), random forest (RF), and gradient boosting decision tree (GBDT)), we can predict V-ij accurately compared to the routine MD -> QM method (for ANN and RF, R-2 > 0.9 and MAE = 10(-3) eV), while shortening the prediction time by 6 orders of magnitude. Generalization verification on an additional five IL-PEDOT cases confirms the predictive ability of the model. Then, the predicted V-ij was used to estimate the mobility. Finally, representative IL [EMIM][TFSI]-regulated PEDOT aqueous solutions with different concentrations were experimentally characterized by AFM and conductivity measurements, the conductivity being in line with the change tendency of the estimated mobility. This alternative ML model opens up new perspectives for ultrafast prediction of the mobility of IL-PEDOT in any morphology and can be transferred to other analogs before real device construction.
WOS关键词HOLE TRANSPORT ; MULTISCALE ; MORPHOLOGY ; CHEMISTRY ; POLYMERS
资助项目National Natural Science Foundation of China[22008238] ; National Natural Science Foundation of China[21922813] ; National Natural Science Foundation of China[21890762] ; National Natural Science Foundation of China[21776278] ; National Natural Science Foundation of China[21673175] ; DNL Cooperation Fund, CAS[DNL 180202] ; Youth Innovation Promotion Association CAS[2017066]
WOS研究方向Chemistry ; Energy & Fuels ; Materials Science
语种英语
WOS记录号WOS:000716529600001
出版者ROYAL SOC CHEMISTRY
资助机构National Natural Science Foundation of China ; DNL Cooperation Fund, CAS ; Youth Innovation Promotion Association CAS
源URL[http://ir.ipe.ac.cn/handle/122111/50938]  
专题中国科学院过程工程研究所
通讯作者Sun, Zhu-Zhu; He, Hongyan
作者单位1.Chinese Acad Sci, Innovat Acad Green Mfg, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Beijing Key Lab Ion Liquids Clean Process, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
3.Tsinghua Univ, Dept Chem, MOE Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
4.Singapore Univ Technol & Design, Singapore Sci & Math Cluster, Singapore 487372, Singapore
5.Heze Univ, Coll Phys & Elect Engn, Heze 274015, Peoples R China
6.Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
推荐引用方式
GB/T 7714
Ding, Wei-Lu,Lu, Yumiao,Peng, Xing-Liang,et al. Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning[J]. JOURNAL OF MATERIALS CHEMISTRY A,2021,9(45):25547-25557.
APA Ding, Wei-Lu.,Lu, Yumiao.,Peng, Xing-Liang.,Dong, Hao.,Chi, Wei-Jie.,...&He, Hongyan.(2021).Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning.JOURNAL OF MATERIALS CHEMISTRY A,9(45),25547-25557.
MLA Ding, Wei-Lu,et al."Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning".JOURNAL OF MATERIALS CHEMISTRY A 9.45(2021):25547-25557.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。