Visible Achromatic Metalens Design Based on Artificial Neural Network
文献类型:期刊论文
作者 | Wang, Feilou5; Geng, Guangzhou6; Wang, Xueqian2; Li, Junjie6; Bai, Yang2; Li, Jianqiang3,4; Wen, Yongzheng5; Li, Bo1; Sun, Jingbo5; Zhou, Ji5 |
刊名 | ADVANCED OPTICAL MATERIALS
![]() |
出版日期 | 2021-11-23 |
页码 | 8 |
关键词 | achromatic focusing metalenses neural networks visible wavelength |
ISSN号 | 2195-1071 |
DOI | 10.1002/adom.202101842 |
英文摘要 | Metasurfaces, known as ultra-thin and planar structures, are widely used in optical components with their excellent ability to manipulate the wavefront of the light. The key function of the metasurfaces is the spatial phase modulation, originated from the meta-atoms. Thus, to find the relation between the phase modulation and the parameters of an individual meta-atom, including the sizes, shapes, and material's optical properties, is the most important but also time-consuming part in the metasurface design. Here by developing a backpropagation neural network based machine learning tool, the design process of a high performance achromatic metalens can be greatly simplified and accelerated. A library of the phase modulation data from 15 753 meta-atoms can be generated in less than 1 s by our backpropagation neural network. In the experiment, it is demonstrated that the designed metalens shows an excellent achromatic focusing and imaging ability in the visible wavelengths from 420 to 640 nm without the polarization dependence. |
WOS关键词 | DIELECTRIC METASURFACES ; RESOLUTION ; PHASE ; POLARIZATION |
资助项目 | Basic Science Center Project of NSFC[51788104] ; National Natural Science Foundation of China[11974203] ; National Natural Science Foundation of China[12074420] ; National Natural Science Foundation of China[52072203] ; Beijing Municipal Science and Technology Project[Z191100004819002] ; National Key Research and Development Program of China[2016YFA0200800] |
WOS研究方向 | Materials Science ; Optics |
语种 | 英语 |
WOS记录号 | WOS:000721792600001 |
出版者 | WILEY-V C H VERLAG GMBH |
资助机构 | Basic Science Center Project of NSFC ; National Natural Science Foundation of China ; Beijing Municipal Science and Technology Project ; National Key Research and Development Program of China |
源URL | [http://ir.ipe.ac.cn/handle/122111/51128] ![]() |
专题 | 中国科学院过程工程研究所 |
通讯作者 | Li, Junjie; Bai, Yang; Sun, Jingbo; Zhou, Ji |
作者单位 | 1.Tsinghua Shenzhen Int Grad Sch Shenzhen, Inst Mat Res, Shenzhen 518055, Peoples R China 2.Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Adv Mat & Technol, Beijing 100083, Peoples R China 3.Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China 4.Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Natl Engn Lab Hydromet Cleaner Prod Technol, Inst Proc Engn, Beijing 100190, Peoples R China 5.Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Sch Mat Sci & Engn, Beijing 100084, Peoples R China 6.Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Feilou,Geng, Guangzhou,Wang, Xueqian,et al. Visible Achromatic Metalens Design Based on Artificial Neural Network[J]. ADVANCED OPTICAL MATERIALS,2021:8. |
APA | Wang, Feilou.,Geng, Guangzhou.,Wang, Xueqian.,Li, Junjie.,Bai, Yang.,...&Zhou, Ji.(2021).Visible Achromatic Metalens Design Based on Artificial Neural Network.ADVANCED OPTICAL MATERIALS,8. |
MLA | Wang, Feilou,et al."Visible Achromatic Metalens Design Based on Artificial Neural Network".ADVANCED OPTICAL MATERIALS (2021):8. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。