中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid

Layer structured materials for ambient nitrogen fixation

文献类型:期刊论文

作者Fu, Yang1; Liao, Yuan2; Li, Peng1; Li, Hui1; Jiang, Shuaiyu1; Huang, Hongwei3; Sun, Wenping4; Li, Tianyan5; Yu, Hai6; Li, Kangkang6
刊名COORDINATION CHEMISTRY REVIEWS
出版日期2022-06-01
卷号460页码:54
ISSN号0010-8545
关键词Layer structured materials Nitrogen fixation Ammonia Photo/electrocatalysis
DOI10.1016/j.ccr.2022.214468
英文摘要Recently, the research of nitrogen fixation at ambient conditions has attracted wide attention due to its potential of relatively low energy consumption and environmental friendliness. The rational design of catalysts is one of the pivotal factors to achieve high nitrogen fixation efficiency. On account of the large exposed surfaces areas, continuous conducting pathways, open shortened diffusion distances, stable in plane chemical bonds, expanded interlayer spacing, as well as weak van der Waals interaction within layers, it has been an extensive option to choose layer structured materials as potential nitrogen fixation materials in recent years. Notably, compared to other nitrogen fixation catalysts, layered materials not only reduce the migration distances between the reaction interface and charge carriers, inhibiting the possibility of charge carrier recombination, but also enrich low-coordinated surface atoms. Moreover, most of them belonging to p-block materials show excellent hydrophobicity, strong chemical interaction with N-2 molecules, and low cost, which make them promising candidates for effectively limiting hydrogen evolution. Despite the favorable advantages of the layer structured materials on nitrogen fixation, more challenges and opportunities have arisen for the exploitation and fabrication of novel layered materials with unique properties and specific functions to achieve high selectivity and high yield. Up to now, although the research scope of layered structured materials has been expanded gradually and their structural feature supply an alternative way of improving nitrogen fixation properties while puting forwarding relative binding and effect mechanisms, the adsorption and catalysis mechanisms of these materials in nitrogen fixation are still controversial due to the lack of in situ/operando characterization and neglect of the complex reaction system and environment factors. In this review, we firstly summarize typical layered materials used in nitrogen fixation and categorize them into metal-containing and metal-free materials. The former includes transition metal dichalcogenides, MXenes, and metal-organic frameworks, as well as other emerging advanced materials such as layered double hydroxides, bismuth-based layered materials while the latter includes graphene, graphitic carbon nitride sheet, black phosphorus, boron- based layered materials, and covalent organic framework. Secondly, we briefly introduce the structural characteristics and the recently reported synthesis strategies based on the typical layer structured materials, and discuss their structure-performance relationship. Thirdly, insights into possible pathways, strategies, and products of nitrogen fixation are discussed to provide layer structured materials with corresponding suitable avenues in the future. More importantly, their up-to-date progress applied in photocatalytic, electrocatalytic, and photoelectrocatalytic nitrogen reduction reactions will be systematically presented, and the concomitant obstacles are also revealed. At last, the strategies, challenges, and prospects for future developments of nitrogen fixation materials at room temperature and pressure are summarized. (C)& nbsp;2022 Elsevier B.V. All rights reserved.
WOS关键词GRAPHITIC CARBON NITRIDE ; LAYERED DOUBLE HYDROXIDES ; ELECTROCATALYTIC N-2 REDUCTION ; HEXAGONAL BORON-NITRIDE ; Z-SCHEME HETEROJUNCTION ; BLACK PHOSPHORUS ; CATALYTIC-ACTIVITY ; VISIBLE-LIGHT ; SURFACE-AREA ; NANOSHEETS
资助项目Australian Research Council (ARC)[FT210100298] ; Australian Research Council (ARC)[FT210100806] ; Australian Research Council (ARC)[DP220100603] ; Australian Research Council (ARC)[LP210100467] ; Australian Research Council (ARC)[IC180100005] ; CSIRO Energy Centre ; China Scholarship Council[201804910553] ; Victorian Government through Study Melbourne ; Kick-Start Project
WOS研究方向Chemistry
语种英语
出版者ELSEVIER SCIENCE SA
WOS记录号WOS:000790633000001
资助机构Australian Research Council (ARC) ; CSIRO Energy Centre ; China Scholarship Council ; Victorian Government through Study Melbourne ; Kick-Start Project
源URL[http://ir.ipe.ac.cn/handle/122111/53105]  
专题中国科学院过程工程研究所
通讯作者Li, Hao; Jia, Baohua; Ma, Tianyi
作者单位1.RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
2.Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
3.China Univ Geosci, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Beijing 100083, Peoples R China
4.Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
5.Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
6.CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
7.Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai, Miyagi 9808577, Japan
推荐引用方式
GB/T 7714
Fu, Yang,Liao, Yuan,Li, Peng,et al.

Layer structured materials for ambient nitrogen fixation

[J]. COORDINATION CHEMISTRY REVIEWS,2022,460:54.
APA Fu, Yang.,Liao, Yuan.,Li, Peng.,Li, Hui.,Jiang, Shuaiyu.,...&Ma, Tianyi.(2022).

Layer structured materials for ambient nitrogen fixation

.COORDINATION CHEMISTRY REVIEWS,460,54.
MLA Fu, Yang,et al."

Layer structured materials for ambient nitrogen fixation

".COORDINATION CHEMISTRY REVIEWS 460(2022):54.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。