Vector Magnetic Anomaly Detection via an Attention Mechanism Deep-Learning Model
文献类型:期刊论文
作者 | Wu, Xueshan1,2,3; Huang, Song2,3; Li, Min1,2,3; Deng, Yufeng1,2,3 |
刊名 | APPLIED SCIENCES-BASEL
![]() |
出版日期 | 2021-12-01 |
卷号 | 11期号:23页码:12 |
关键词 | deep learning Gaussian colored noise magnetic anomaly detection (MAD) three-axis magnetometer |
DOI | 10.3390/app112311533 |
英文摘要 | Magnetic anomaly detection (MAD) is used for detecting moving ferromagnetic targets. In this study, we present an end-to-end deep-learning model for magnetic anomaly detection on data recorded by a single static three-axis magnetometer. We incorporate an attention mechanism into our network to improve the detection capability of long time-series signals. Our model has good performance under the Gaussian colored noise with the power spectral density of 1/f a which is similar to the field magnetic noise. Our method does not require another magnetometer to eliminate the effects of the Earth's magnetic field or external interferences. We evaluate the network's performance through computer simulations and real-world experiments. The high detection performance and the single magnetometer implementation show great potential for real-time detection and edge computing. |
资助项目 | National Natural Science Foundation of China[91858214] ; National Key R&D Program of China[2018YFC0604004] |
WOS研究方向 | Chemistry ; Engineering ; Materials Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000734596000001 |
出版者 | MDPI |
资助机构 | National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China ; National Key R&D Program of China |
源URL | [http://ir.iggcas.ac.cn/handle/132A11/103950] ![]() |
专题 | 地质与地球物理研究所_中国科学院油气资源研究重点实验室 |
通讯作者 | Huang, Song |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China 3.Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100029, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Xueshan,Huang, Song,Li, Min,et al. Vector Magnetic Anomaly Detection via an Attention Mechanism Deep-Learning Model[J]. APPLIED SCIENCES-BASEL,2021,11(23):12. |
APA | Wu, Xueshan,Huang, Song,Li, Min,&Deng, Yufeng.(2021).Vector Magnetic Anomaly Detection via an Attention Mechanism Deep-Learning Model.APPLIED SCIENCES-BASEL,11(23),12. |
MLA | Wu, Xueshan,et al."Vector Magnetic Anomaly Detection via an Attention Mechanism Deep-Learning Model".APPLIED SCIENCES-BASEL 11.23(2021):12. |
入库方式: OAI收割
来源:地质与地球物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。