中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks

文献类型:期刊论文

作者Wei, Qing1; Li, Xiangyang1,3; Song, Mingpeng2
刊名COMPUTERS & GEOSCIENCES
出版日期2021-09-01
卷号154页码:13
关键词De-aliased seismic data interpolation Conditional generative adversarial network Wasserstein distance
ISSN号0098-3004
DOI10.1016/j.cageo.2021.104801
英文摘要When sampling at offset is too coarse during seismic acquisition, spatial aliasing will appear, affecting the accuracy of subsequent processing. The receiver spacing can be reduced by interpolating one or more traces between every two traces to remove the spatial aliasing. And the seismic data with spatial aliasing can be seen as regular missing data. Deep learning is an efficient method for seismic data interpolation. We propose to interpolate the regular missing seismic data to remove the spatial aliasing by using conditional generative adversarial networks (cGAN). Wasserstein distance, which can avoid gradient vanishing and mode collapse, is used in training cGAN (cWGAN) to improve the quality of the interpolated data. One velocity model is designed to simulate the training dataset. Test results on different seismic datasets show that the cWGAN with Wasserstein distance is an accurate way for de-aliased seismic data interpolation. Unlike the traditional interpolation methods, cWGAN can avoid the assumptions of low-rank, sparsity, or linearity of seismic data. Besides, once the neural network is trained, we do not need to test different parameters for the best interpolation result, which will improve efficiency.
WOS关键词DATA RECONSTRUCTION ; ATTENUATION ; PROJECTION
资助项目Edinburgh Anisotropy Project (EAP) of the British Geological Survey
WOS研究方向Computer Science ; Geology
语种英语
WOS记录号WOS:000756945900007
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey ; Edinburgh Anisotropy Project (EAP) of the British Geological Survey
源URL[http://ir.iggcas.ac.cn/handle/132A11/104905]  
专题地质与地球物理研究所_中国科学院油气资源研究重点实验室
通讯作者Wei, Qing; Li, Xiangyang
作者单位1.China Univ Petr, CNPC Key Lab Geophys Prospecting, Beijing 102249, Peoples R China
2.Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China
3.British Geol Survey, Lyell Ctr, Edinburgh EH14 4AP, Midlothian, Scotland
推荐引用方式
GB/T 7714
Wei, Qing,Li, Xiangyang,Song, Mingpeng. De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks[J]. COMPUTERS & GEOSCIENCES,2021,154:13.
APA Wei, Qing,Li, Xiangyang,&Song, Mingpeng.(2021).De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks.COMPUTERS & GEOSCIENCES,154,13.
MLA Wei, Qing,et al."De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks".COMPUTERS & GEOSCIENCES 154(2021):13.

入库方式: OAI收割

来源:地质与地球物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。