中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A pinning effect for the enhanced oxidation resistance at 1600 degrees C of silicoboron carbonitride ceramics with the addition of MXene

文献类型:期刊论文

作者Liang, Bin1,2; Liao, Xingqi3; Geng, Bo3; Zhu, Qishuai3; Yu, Ming3; Li, Jiacheng3; Liu, Kangwei1; Jia, Dechang3; Yang, Zhihua3; Zhou, Yu3
刊名CORROSION SCIENCE
出版日期2022-03-01
卷号196页码:9
ISSN号0010-938X
关键词Ceramic SEM XRD Oxidation
DOI10.1016/j.corsci.2021.110041
通讯作者Liang, Bin(bliang@imr.ac.cn)
英文摘要MXenes with lots of attractive mechanical and physicochemical properties have great potential in various applications. However, no mention has been made of the high-temperature properties of structural ceramics with MXenes, let alone silicoboron carbonitride (Si-B-C-N) composite ceramics over 1500 degrees C. The influences of MXene (Ti3C2Tx) additives on the oxidation resistance of Si-B-C-N ceramics were investigated at temperatures up to 1600 degrees C here for the first time. Dense, adherent scales are formed on surfaces of the oxidized ceramics at 1100 degrees C, and the thicknesses of scales present an overall decrease with the increased addition of Ti3C2Tx. The addition of 3.0 wt% Ti3C2Tx can improve the oxidation resistance at 1600 degrees C due to the pinning effect of rod-like TiO2 grains mostly buried in SiO2 scales, while less addition could probably deteriorate the anti-oxidation properties. The development of Si-B-C-N composite ceramics demonstrates that MXenes are promising additives for improving high-temperature antioxidant properties of multicomponent silicon-based ceramics at least.
资助项目National Natural Science Foundation of China[51902173] ; China Postdoctoral Science Foundation[2019T120084] ; China Postdoctoral Science Foundation[2018M640123] ; Testing Technology Center of Materials and Devices (Tsinghua Shenzhen International Graduate School, Tsinghua SIGS)
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
出版者PERGAMON-ELSEVIER SCIENCE LTD
WOS记录号WOS:000782107000002
资助机构National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; Testing Technology Center of Materials and Devices (Tsinghua Shenzhen International Graduate School, Tsinghua SIGS)
源URL[http://ir.imr.ac.cn/handle/321006/172863]  
专题金属研究所_中国科学院金属研究所
通讯作者Liang, Bin
作者单位1.Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
3.Inst Adv Ceram, Harbin Inst Technol HIT, Sch Mat Sci & Engn, Harbin 150080, Peoples R China
推荐引用方式
GB/T 7714
Liang, Bin,Liao, Xingqi,Geng, Bo,et al. A pinning effect for the enhanced oxidation resistance at 1600 degrees C of silicoboron carbonitride ceramics with the addition of MXene[J]. CORROSION SCIENCE,2022,196:9.
APA Liang, Bin.,Liao, Xingqi.,Geng, Bo.,Zhu, Qishuai.,Yu, Ming.,...&Zhou, Yu.(2022).A pinning effect for the enhanced oxidation resistance at 1600 degrees C of silicoboron carbonitride ceramics with the addition of MXene.CORROSION SCIENCE,196,9.
MLA Liang, Bin,et al."A pinning effect for the enhanced oxidation resistance at 1600 degrees C of silicoboron carbonitride ceramics with the addition of MXene".CORROSION SCIENCE 196(2022):9.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。